{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Search results for vitamin root_references_citation in Reference Text / Citation (approximate match)
Status:
US Approved Rx
(2007)
Source:
ANDA078012
(2007)
Source URL:
First approved in 1981
Source:
NDA018422
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Gemfibrozil, a fibric acid antilipemic agent similar to clofibrate, is used to treat hyperlipoproteinemia and as a second-line therapy for type IIb hypercholesterolemia. It acts to reduce triglyceride levels, reduce VLDL levels, reduce LDL levels (moderately), and increase HDL levels (moderately). Gemfibrozil increases the activity of extrahepatic lipoprotein lipase (LL), thereby increasing lipoprotein triglyceride lipolysis. It does so by activating Peroxisome proliferator-activated receptor-alpha (PPARα) 'transcription factor ligand', a receptor that is involved in metabolism of carbohydrates and fats, as well as adipose tissue differentiation. This increase in the synthesis of lipoprotein lipase thereby increases the clearance of triglycerides. Chylomicrons are degraded, VLDLs are converted to LDLs, and LDLs are converted to HDL. This is accompanied by a slight increase in secretion of lipids into the bile and ultimately the intestine. Gemfibrozil also inhibits the synthesis and increases the clearance of apolipoprotein B, a carrier molecule for VLDL. Gemfibrozil is most commonly sold as the brand name, Lopid. Other brand names include Jezil and Gen-Fibro.
Status:
US Approved Rx
(2018)
Source:
ANDA207607
(2018)
Source URL:
First approved in 1981
Source:
BUPRENEX by INDIVIOR
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Buprenorphine is an opioid analgesic, used to treat opioid addiction, moderate acute pain, and moderate chronic pain. Buprenorphine is a partial agonist at the mµ-opioid receptor and an antagonist at the kappa-opioid receptor. One unusual property of buprenorphine observed in vitro studies is its very slow rate of dissociation from its receptor. This could account for its longer duration of action than morphine, the unpredictability of its reversal by opioid antagonists, and its low level of manifest physical dependence. The principal action of the therapeutic value of buprenorphine is analgesia and is thought to be due to buprenorphine binding with high affinity to opioid receptors on neurons in the brain and spinal cord. Buprenorphine produces respiratory depression by direct action on brain stem respiratory centers. The respiratory depression involves a reduction in the responsiveness of the brain stem respiratory centers to both increases in carbon dioxide tension and electrical stimulation. Buprenorphine causes a reduction in motility associated with an increase in smooth muscle tone in the antrum of the stomach and duodenum. Digestion of food in the small intestine is delayed and propulsive contractions are decreased. Buprenorphine produces peripheral vasodilation, which may result in orthostatic hypotension or syncope. Manifestations of histamine release and/or peripheral vasodilation may include pruritus, flushing, red eyes, sweating, and/or orthostatic hypotension.
Status:
US Approved Rx
(2016)
Source:
NDA208010
(2016)
Source URL:
First approved in 1980
Source:
CALDEROL by ORGANON USA INC
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Calcifediol (25-Hydroxyvitamin D3 or 25-hydroxycholecalciferol) is a biologically active vitamin D3 metabolite. It is concluded that the liver is the major if not the only physiologic site of hydroxylation of vitamin D3 into calcifediol. Calcifediol is a prohormone of the active form of vitamin D3, calcitriol (1,25-dihydroxyvitamin D3). Calcifediol is converted to calcitriol by cytochrome P450 27B1 (CYP27B1), also called 1-alpha hydroxylase, primarily in the kidney. Calcitriol binds to the vitamin D receptor in target tissues and activates vitamin D responsive pathways that result in increased intestinal absorption of calcium and phosphorus and reduced parathyroid hormone synthesis. RAYALDEE (calcifediol) extended-release capsules is indicated for the treatment of secondary hyperparathyroidism in adult patients with stage 3 or 4 chronic kidney disease.
Status:
US Approved Rx
(1998)
Source:
NDA050731
(1998)
Source URL:
First approved in 1979
Source:
CERUBIDINE by WYETH AYERST
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Daunorubicin, also known as daunomycin, is a chemotherapy medication used to treat cancer. Specifically, it is used for acute myeloid leukemia (AML), acute lymphocytic leukemia (ALL), chronic myelogenous leukemia (CML), and Kaposi's sarcoma. Similar to doxorubicin, daunorubicin interacts with DNA by intercalation and inhibition of macromolecular biosynthesis. This inhibits the progression of the enzyme topoisomerase II, which relaxes supercoils in DNA for transcription. Daunorubicin stabilizes the topoisomerase II complex after it has broken the DNA chain for replication, preventing the DNA double helix from being resealed and thereby stopping the process of replication. On binding to DNA, daunomycin intercalates, with its daunosamine residue directed toward the minor groove. It has the highest preference for two adjacent G/C base pairs flanked on the 5' side by an A/T base pair. Daunorubicin should only be administered in a rapid intravenous infusion. It should not be administered intramuscularly or subcutaneously, since it may cause extensive tissue necrosis. It should also never be administered intrathecally (into the spinal canal), as this will cause extensive damage to the nervous system and may lead to death.
Status:
US Approved Rx
(2008)
Source:
ANDA078807
(2008)
Source URL:
First approved in 1979
Source:
REGLAN by HIKMA
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Metoclopramide is a dopamine D2 antagonist that is used as an antiemetic. Metoclopramide inhibits gastric smooth muscle relaxation produced by dopamine, therefore increasing cholinergic response of the gastrointestinal smooth muscle. It accelerates intestinal transit and gastric emptying by preventing relaxation of gastric body and increasing the phasic activity of antrum. Simultaneously, this action is accompanied by relaxation of the upper small intestine, resulting in an improved coordination between the body and antrum of the stomach and the upper small intestine. Metoclopramide also decreases reflux into the esophagus by increasing the resting pressure of the lower esophageal sphincter and improves acid clearance from the esophagus by increasing amplitude of esophageal peristaltic contractions. Metoclopramide's dopamine antagonist action raises the threshold of activity in the chemoreceptor trigger zone and decreases the input from afferent visceral nerves. Studies have also shown that high doses of metoclopramide can antagonize 5-hydroxytryptamine (5-HT) receptors in the peripheral nervous system in animals. Metoclopramide is used for the treatment of gastroesophageal reflux disease (GERD). It is also used in treating nausea and vomiting, and to increase gastric emptying.
Status:
US Approved Rx
(1998)
Source:
NDA021068
(1998)
Source URL:
First approved in 1978
Source:
NDA018044
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Calcitriol is vitamin D3. Vitamin D is important for the absorption of calcium from the stomach and for the functioning of calcium in the body. Calcitriol is used to treat hyperparathyroidism (overactive parathyroid glands) and metabolic bone disease in people who have chronic kidney failure and are not receiving dialysis. Calcitriol is also used to treat calcium deficiency (hypocalcemia). The early signs and symptoms of vitamin D intoxication associated with hypercalcemia include: weakness, headache, somnolence, nausea, vomiting, dry mouth, constipation, muscle pain, bone pain and metallic taste. Cholestyramine has been reported to reduce intestinal absorption of fatsoluble vitamins; as such it may impair intestinal absorption of Calcitriol. Ketoconazole may inhibit both synthetic and catabolic enzymes of calcitriol.
Status:
US Approved Rx
(2024)
Source:
ANDA218997
(2024)
Source URL:
First approved in 1977
Source:
TAGAMET by GLAXOSMITHKLINE
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Cimetidine is a histamine H2-receptor antagonist. It reduces basal and nocturnal gastric acid secretion and a reduction in gastric volume, acidity, and amount of gastric acid released in response to stimuli including food, caffeine, insulin, betazole, or pentagastrin. It is used to treat gastrointestinal disorders such as gastric or duodenal ulcer, gastroesophageal reflux disease, and pathological hypersecretory conditions. Cimetidine inhibits many of the isoenzymes of the hepatic CYP450 enzyme system. Other actions of Cimetidine include an increase in gastric bacterial flora such as nitrate-reducing organisms. Cimetidine binds to an H2-receptor located on the basolateral membrane of the gastric parietal cell, blocking histamine effects. This competitive inhibition results in reduced gastric acid secretion and a reduction in gastric volume and acidity.
Status:
US Approved Rx
(2003)
Source:
ANDA074732
(2003)
Source URL:
First approved in 1977
Source:
NOLVADEX by ASTRAZENECA
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Tamoxifen (brand name Nolvadex), is selective estrogen receptor modulators (SERM) with tissue-specific activities for the treatment and prevention of estrogen receptor positive breast cancer. Tamoxifen itself is a prodrug, having relatively little affinity for its target protein, the estrogen receptor (ER). It is metabolized in the liver by the cytochrome P450 isoform CYP2D6 and CYP3A4 into active metabolites such as 4-hydroxytamoxifen (4-OHT) (afimoxifene) and N-desmethyl-4-hydroxytamoxifen (endoxifen) which have 30–100 times more affinity with the ER than tamoxifen itself. These active metabolites compete with estrogen in the body for binding to the ER. In breast tissue, 4-OHT acts as an ER antagonist so that transcription of estrogen-responsive genes is inhibited. Tamoxifen has 7% and 6% of the affinity of estradiol for the ERα and ERβ, respectively, whereas 4-OHT has 178% and 338% of the affinity of estradiol for the ERα and ERβ. The prolonged binding of tamoxifen to the nuclear chromatin of these results in reduced DNA polymerase activity, impaired thymidine utilization, blockade of estradiol uptake, and decreased estrogen response. It is likely that tamoxifen interacts with other coactivators or corepressors in the tissue and binds with different estrogen receptors, ER-alpha or ER-beta, producing both estrogenic and antiestrogenic effects. Tamoxifen is currently used for the treatment of both early and advanced estrogen receptor (ER)-positive (ER+) breast cancer in pre- and post-menopausal women. Additionally, it is the most common hormone treatment for male breast cancer. Patients with variant forms of the gene CYP2D6 (also called simply 2D6) may not receive full benefit from tamoxifen because of too slow metabolism of the tamoxifen prodrug into its active metabolites. Tamoxifen is used as a research tool to trigger tissue-specific gene expression in many conditional expression constructs in genetically modified animals including a version of the Cre-Lox recombination technique. Tamoxifen has been shown to be effective in the treatment of mania in patients with bipolar disorder by blocking protein kinase C (PKC), an enzyme that regulates neuron activity in the brain. Researchers believe PKC is over-active during the mania in bipolar patients.
Status:
US Approved Rx
(2007)
Source:
ANDA077088
(2007)
Source URL:
First approved in 1977
Source:
LIORESAL by NOVARTIS
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Conditions:
Baclofen (brand names Kemstro, Lioresal, and Gablofen) is a derivative of gamma-aminobutyric acid (GABA). Baclofen is a muscle relaxer and an antispastic agent and is used to treat muscle symptoms caused by multiple sclerosis, including spasm, pain, and stiffness. It is primarily used to treat spasticity and is under investigation for the treatment of alcoholism. Although baclofen is an analog of the putative inhibitory neurotransmitter gamma-aminobutyric acid (GABA), there is no conclusive evidence that actions on GABA systems are involved in the production of its clinical effects. Baclofen is rapidly and extensively absorbed and eliminated. Absorption may be dose-dependent, being reduced with increasing doses. Baclofen is excreted primarily by the kidney in unchanged form and there is relatively large intersubjective variation in absorption and/or elimination. Baclofen is a direct agonist at GABA-B receptors. The precise mechanism of action of baclofen is not fully known. It is capable of inhibiting both monosynaptic and polysynaptic reflexes at the spinal level, possibly by hyperpolarization of afferent terminals, although actions at supraspinal sites may also occur and contribute to its clinical effect.
Status:
US Approved Rx
(1992)
Source:
NDA019617
(1992)
Source URL:
First approved in 1977
Source:
PROSTIN E2 by PFIZER
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Dinoprostone is a naturally occurring prostaglandin E2 (PGE2). Dinoprostone is equivalent to prostaglandin E2 (PGE2). It stimulates labor and delivery by stimulating the uterine, and thus terminates pregnancy. Dinoprostone is also capable of stimulating the smooth muscle of the gastrointestinal tract of man. This activity may be responsible for the vomiting and/or diarrhea that is not uncommon when dinoprostone is used to terminate pregnancy. Dinoprostone administered intravaginally stimulates the myometrium of the gravid uterus to contract in a manner that is similar to the contractions seen in the term uterus during labor, resulting in the evacuation of the products of conception from the uterus. It is believed that dinoprostone exerts its uterine effects via direct myometrial stimulation. It is used for the termination of pregnancy during the second trimester (from the 12th through the 20th gestational week as calculated from the first day of the last normal menstrual period), as well as for evacuation of the uterine contents in the management of missed abortion or intrauterine fetal death up to 28 weeks of gestational age as calculated from the first day of the last normal menstrual period. Also used in the management of nonmetastatic gestational trophoblastic disease (benign hydatidiform mole). Other indications include improving the cervical inducibility (cervical "ripening") in pregnant women at or near term with a medical or obstetrical need for labor induction, and the management of postpartum hemorrhage.