U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 171 - 180 of 5585 results

Status:

Class (Stereo):
CHEMICAL (MIXED)


Conditions:

Labetalol is a blocker of both alpha- and beta-adrenergic receptors that is used as an antihypertensive. It may be used alone or in combination with other antihypertensive agents, especially thiazide and loop diuretics. The capacity of labetalol HCl to block alpha receptors in man has been demonstrated by attenuation of the pressor effect of phenylephrine and by a significant reduction of the pressor response caused by immersing the hand in ice-cold water ("cold-pressor test"). Labetalol HCl's beta1-receptor blockade in man was demonstrated by a small decrease in the resting heart rate, attenuation of tachycardia produced by isoproterenol or exercise, and by attenuation of the reflex tachycardia to the hypotension produced by amyl nitrite. Beta2-receptor blockade was demonstrated by inhibition of the isoproterenol-induced fall in diastolic blood pressure. Both the alpha- and beta-blocking actions of orally administered labetalol HCl contribute to a decrease in blood pressure in hypertensive patients. Labetalol HCl consistently, in dose-related fashion, blunted increases in exercise-induced blood pressure and heart rate, and in their double product. The pulmonary circulation during exercise was not affected by labetalol HCl dosing. Single oral doses of labetalol HCl administered to patients with coronary artery disease had no significant effect on sinus rate, intraventricular conduction, or QRS duration. The atrioventricular (A-V) conduction time was modestly prolonged in two of seven patients. In another study, IV labetalol HCl slightly prolonged A-V nodal conduction time and atrial effective refractory period with only small changes in heart rate. The metabolism of labetalol is mainly through conjugation to glucuronide metabolites. These metabolites are present in plasma and are excreted in the urine and, via the bile, into the feces. Approximately 55% to 60% of a dose appears in the urine as conjugates or unchanged labetalol within the first 24 hours of dosing. Labetalol has been shown to cross the placental barrier in humans. Only negligible amounts of the drug crossed the blood-brain barrier in animal studies. Labetalol is approximately 50% protein bound. Neither hemodialysis nor peritoneal dialysis removes a significant amount of labetalol HCl from the general circulation.
Status:
First approved in 1984

Class (Stereo):
CHEMICAL (ACHIRAL)



Pentoxil (Pentoxifylline Extended-release Tablets, USP) is indicated for the treatment of patients with intermittent claudication based on chronic occlusive arterial disease of the limbs. Pentoxil can improve function and symptoms but is not intended to replace more definitive therapy, such as surgical bypass, or removal of arterial obstructions when treating peripheral vascular disease. Pentoxifylline and its metabolites improve the flow properties of blood by decreasing its viscosity. In patients with chronic peripheral arterial disease, this increases blood flow to the affected microcirculation and enhances tissue oxygenation. The precise mode of action of pentoxifylline and the sequence of events leading to clinical improvement are still to be defined. Pentoxifylline inhibits erythrocyte phosphodiesterase, resulting in an increase in erythrocyte cAMP activity. Subsequently, the erythrocyte membrane becomes more resistant to deformity. Along with erythrocyte activity, pentoxifylline also decreases blood viscosity by reducing plasma fibrinogen concentrations and increasing fibrinolytic activity. It is also a non-selective adenosine receptor antagonist. Pentoxifylline administration has been shown to produce dose-related hemorrheologic effects, lowering blood viscosity, and improving erythrocyte flexibility. Pentoxifylline has been shown to increase leukocyte deformability and to inhibit neutrophil adhesion and activation. Tissue oxygen levels have been shown to be significantly increased by therapeutic doses of pentoxifylline in patients with peripheral arterial disease. Clinical trials were conducted using either extended-release pentoxifylline tablets for up to 60 weeks or immediate-release pentoxifylline capsules for up to 24 weeks. Dosage ranges in the tablet studies were 400 mg bid to tid and in the capsule studies, 200-400 mg tid. The incidence of adverse reactions was higher in the capsule studies (where dose related increases were seen in digestive and nervous system side effects) than in the tablet studies. Studies with the capsule include domestic experience, whereas studies with the extended-release tablets were conducted outside the U.S.
Nicotine is a natural alkaloid obtained from the dried leaves and stems of the nightshade family of pants, such as Nicotiana tabacum and Nicotiana rustica, where it occurs in concentrations of 0.5-8%. Cigarette tobacco varies in its nicotine content, but common blends contain 15-25 mg per cigarette, with a current trend towards lower levels. Nicotine is highly addictive substance, it exhibits a stimulant effect when adsorbed at 2 mg. Administration of higher doses could be harmful. Action of nicotine is mediated by nicotinic cholinergic receptors. Nicotine binds to the interface between two subunits of the receptors, opens the channel and allows the entry of sodium or calcium. The principal mediator of nicotine dependence is α4β2 nicotine receptor.
Status:
First approved in 1984

Class (Stereo):
CHEMICAL (RACEMIC)



Acebutolol is a cardioselective, beta-adrenoreceptor blocking agent, which possesses mild intrinsic sympathomimetic activity (ISA) in its therapeutically effective dose range. Acebutolol is marketed under the trade names Sectral, Prent. Acebutolol is indicated for the management of hypertension in adults. It may be used alone or in combination with other antihypertensive agents, especially thiazide-type diuretics. Acebutolol is also indicated in the management of ventricular premature beats; it reduces the total number of premature beats, as well as the number of paired and multiform ventricular ectopic beats, and R-on-T beats. Acebutolol is a selective β1-receptor antagonist. Activation of β1-receptors by epinephrine increases the heart rate and the blood pressure, and the heart consumes more oxygen. Acebutolol blocks these receptors, lowering the heart rate and blood pressure. This drug then has the reverse effect of epinephrine. In addition, beta blockers prevent the release of renin, which is a hormone produced by the kidneys which leads to constriction of blood vessels.
Sufentanil is a synthetic opioid analgesic. Sufentanil interacts predominately with the opioid mu-receptor. These mu-binding sites are discretely distributed in the human brain, spinal cord, and other tissues. In clinical settings, sufentanil exerts its principal pharmacologic effects on the central nervous system. Its primary actions of therapeutic value are analgesia and sedation. Sufentanil may increase the patient's tolerance for pain and decrease the perception of suffering, although the presence of the pain itself may still be recognized. In addition to analgesia, alterations in mood, euphoria and dysphoria, and drowsiness commonly occur. Sufentanil depresses the respiratory centers, depresses the cough reflex, and constricts the pupils. Opiate receptors are coupled with G-protein receptors and function as both positive and negative regulators of synaptic transmission via G-proteins that activate effector proteins. Binding of the opiate stimulates the exchange of GTP for GDP on the G-protein complex. As the effector system is adenylate cyclase and cAMP located at the inner surface of the plasma membrane, opioids decrease intracellular cAMP by inhibiting adenylate cyclase. Subsequently, the release of nociceptive neurotransmitters such as substance P, GABA, dopamine, acetylcholine and noradrenaline is inhibited. Opioids also inhibit the release of vasopressin, somatostatin, insulin and glucagon. Sufentanil's analgesic activity is, most likely, due to its conversion to morphine. Opioids open calcium-dependent inwardly rectifying potassium channels (OP1 receptor agonist). This results in hyperpolarization and reduced neuronal excitability. Sufentanil is used as an analgesic adjunct in anesthesia and as a primary anesthetic drug in procedures requiring assisted ventilation and in the relief of pain.
Cyclosporins are cyclic polypeptide macrolides that were originally derived from the soil fungus Tolypocladium inflatum. Cyclosporine (also known as cyclosporine A) was discovered by Sandoz and developed for the tretment of immune disorders. The drug was approved by FDA for such diseases as Rheumatoid Arthritis, Psoriasis (Neoral), Keratoconjunctivitis sicca (Restasis) and prevention of transplant rejections (Neoral and Sandimmune). Cyclosporine’s primary immunosuppressive mechanism of action is inhibition of T-lymphocyte function. Upon administration cyclosporine binds to cyclophilin A and thus inhibits calcineurin, leading to immune system suppression.
Ranitidine, a histamine H2-receptor antagonist, is now well established as a potent inhibitor of gastric acid secretion effective in the treatment and prophylaxis of gastrointestinal lesions aggravated by gastric acid secretion.
Indapamide is an antihypertensive and a diuretic. It contains both a polar sulfamoyl chlorobenzamide moiety and a lipid- soluble methylindoline moiety. Indapamide blocks the slow component of delayed rectifier potassium current (IKs) without altering the rapid component (IKr) or the inward rectifier current. Specifically it blocks or antagonizes the action the proteins KCNQ1 and KCNE1. Indapamide is also thought to stimulate the synthesis of the vasodilatory hypotensive prostaglandin PGE2. Indapamide is used for the treatment of hypertension, alone or in combination with other antihypertensive drugs, as well as for the treatment of salt and fluid retention associated with congestive heart failure or edema from pregnancy (appropriate only in the management of edema of pathologic origin during pregnancy when clearly needed). Also used for the management of edema as a result of various causes.
Acyclovir is a synthetic antiviral nucleoside analogue. A screening program for antiviral drugs begun at Burroughs Wellcome in the 1960s resulted in the discovery of acyclovir in 1974. Preclinical investigation brought the drug to clinical trials in 1977 and the first form of the drug (topical) was available to physicians in 1982. Activity of acyclovir is greatest against herpes 1 and herpes 2, less against varicella zoster, still less against Epstein-Barr, and very little against cytomegalovirus. Acyclovir is an antiviral agent only after it is phosphorylated in infected cells by a viral-induced thymidine kinase. Acyclovir monophosphate is phosphorylated to diphosphate and triphosphate forms by cellular enzymes in the infected host cell where the drug is concentrated. Acyclovir triphosphate inactivates viral deoxyribonucleic acid polymerase.
Atenolol is a Beta-1 cardio-selective adreno-receptor blocking agent discovered and developed by ICI in 1976. Atenolol was launched in the market under the trade name Tenormin in 1976, and became the best-selling Beta-blocker in the world in the 1980s and 1990s. TENORMIN is indicated for the treatment of hypertension, to lower blood pressure; also for the long-term management of patients with angina pectoris and also is indicated in the management of hemodynamically stable patients with definite or suspected acute myocardial infarction to reduce cardiovascular mortality. Like metoprolol, atenolol competes with sympathomimetic neurotransmitters such as catecholamines for binding at beta(1)-adrenergic receptors in the heart and vascular smooth muscle, inhibiting sympathetic stimulation. This results in a reduction in resting heart rate, cardiac output, systolic and diastolic blood pressure, and reflex orthostatic hypotension. Higher doses of atenolol also competitively block beta(2)-adrenergic responses in the bronchial and vascular smooth muscles. Hypotensive mechanism of atenolol is very complex. Decrease in CO and inhibition of renin-angiotensin-aldosterone system may mainly be responsible for hypotension. It is likely that potassium retaining action of atenolol partly contributes to its hypotensive action. It is also hypothetized that renal kallikrein-kinin system may play a role in modulating the hypotensive action of atenolol.