{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Restrict the search for
dexamethasone phosphate
to a specific field?
Status:
Investigational
Class (Stereo):
CHEMICAL (ACHIRAL)
Sanofi-Synthélabo has developed satavaptan (previously known as SR121463) as a non-peptidic vasopressin V2 receptor antagonist for the potential treatment for cardiovascular indications such as congestive heart failure (CHF) and hypertension. The drug reached phase II for these indications before the studies were discontinued. Satavaptan was also studied for the potential treatment of glaucoma. In addition, this drug was involved in phase III clinical trials in patients with ascites due to cirrhosis of the liver and in in patients with dilutional hyponatremia. However, the further development of the satavaptan was discontinued in 2009.
Status:
Investigational
Class (Stereo):
CHEMICAL (ACHIRAL)
Omigapil (CGP 3466 or TCH346) is a structurally related analog of R-(-)-deprenyl that exhibits virtually no monoamine oxidase type B inhibiting activity but is neuroprotective in the picomolar concentration range. It binds to glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and at subnanomolar concentrations prevent the S-nitrosylation of GAPDH, inhibit GAPDH-Siah binding and prevent the nuclear translocation of GAPDH. Omigapil demonstrated promising potential in the treatment of Parkinson's disease and motoneuron disease in animal models, however, it did not show efficacy in clinical trials. Omigapil is in development for the treatment of congenital muscular dystrophy.
Status:
Investigational
Source:
INN:tafluposide [INN]
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Tafluposide (also known as F 11782) is an epipodophyllotoxin derivative patented by Pierre Fabre Medicament as an antitumor agent. Tafluposide acts as a catalytic inhibitor of topoisomerases I and II, that capable of completely inhibiting the DNA-binding activity of topoisomerase. In preclinical models single or multiple i.p. doses of Tafluposide proves highly active against the s.c. grafted B16 melanoma, significantly increasing survival and inhibiting tumor growth. Tafluposide inhibits the number of pulmonary metastatic foci of the melanoma by 99%. In human tumor xenograft studies, multiple i.p. doses of Tafluposide results in major inhibitory activity against breast) tumors, as well as causing definite tumor regression. Significant activity was also recorded Tafluposide against the refractory lung xenografts.
Class (Stereo):
CHEMICAL (ACHIRAL)
Dimetholizine has antihypertensive activity. It is an antihistaminic agent too. Histamine H1 receptor was predicted as a primary target for dimetholizine. Moreover, it was found to bind the Dopamine D2 and 5-HT1A receptors. Dimetholizine was predicted to be alpha1D-Adrenergic blocker.
Class (Stereo):
CHEMICAL (RACEMIC)
Class (Stereo):
CHEMICAL (ACHIRAL)
FLUFOSAL is an antithrombotic agent.
Status:
Investigational
Source:
USAN:OCTICIZER [USAN]
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Octicizer is used as a plasticizer.
Status:
Investigational
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Apilimod is a small molecule inhibitor of interleukin-12 and interleukin-23 synthesis thereby preventing IL-12/IL-23 mediated immune responses. Apilimod is also observed to inhibit the nuclear accumulation of NF-kappB protein family, and viral infections dependent on phosphatidylinositol-3-phosphate 5-kinase (PIKfyve). Apilimod has been investigated as a potential treatment for a number of autoimmune conditions.
Status:
Investigational
Class (Stereo):
CHEMICAL (ABSOLUTE)
Class (Stereo):
CHEMICAL (ABSOLUTE)
Rosamaricin is a macrolide antibiotic similar to erythromycin. This compound is more effective against Gram-negative bacteria than erythromycin, especially in the prostate where rosamaricin was shown to be more concentrated than erythromycin in dogs. Rosamaricin has antibiotic activity against Neisseria gonorrhoeae, Chlamydia trachomatis, Ureaplasma urealyticum and Mycoplasma hominis. When the drug was compared with penicillin G in the treatment of pneumococcal meningitis in rabbits it was found to be less effective than penicillin G, as measured by bacterial clearance from cerebrospinal fluid and by treatment outcome. No information on the current use of this compound is available.