U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 121 - 130 of 4352 results

Propafenone (brand name Rythmol SR or Rytmonorm) is a class 1C anti-arrhythmic medication, which treats illnesses associated with rapid heartbeats such as atrial and ventricular arrhythmias. The electrophysiological effect of propafenone manifests itself in a reduction of upstroke velocity (Phase 0) of the monophasic action potential. In Purkinje fibers, and to a lesser extent myocardial fibers, propafenone reduces the fast inward current carried by sodium ions, which is responsible for the drugs antiarrhythmic actions. Diastolic excitability threshold is increased and effective refractory period prolonged. Propafenone reduces spontaneous automaticity and depresses triggered activity. At very high concentrations in vitro, propafenone can inhibit the slow inward current carried by calcium but this calcium antagonist effect probably does not contribute to antiarrhythmic efficacy. Propafenone is metabolized primarily in the liver. Because of its short half-life, it requires dosing two or three times daily to maintain steady blood levels. The long-term safety of propafenone is unknown. Because it is structurally similar to another anti-arrhythmic medicine, flecainide, similar cautions should be exercised in its use. Flecainide and propafenone, like other antiarrhythmic drugs, have been shown to increase the occurrence of arrhythmias (5.3% for propafenone, Teva physician prescribing information), primarily in patients with underlying heart disease. However, their use in structurally normal hearts is considered safe.
Clozapine was discovered in 1958 by an anesthetist and now it is used for the treatment of schizophrenia. Although the exact mechanism of its action is unknown, the effect of clozapine on schizophrenia is associated with inhibition of dopamine D2 and serotonin 2A receptors.
Status:

Class (Stereo):
CHEMICAL (ACHIRAL)

Targets:


ALBENZA (albendazole) is an orally administered anthelmintic drug. Chemically, it is methyl 5¬ (propylthio)-2-benzimidazolecarbamate, is indicated to treatment of parenchymal neurocysticercosis due to active lesions caused by larval forms of the pork tapeworm, Taenia solium. In addition, treatment of cystic hydatid disease of the liver, lung, and peritoneum, caused by the larval form of the dog tapeworm, Echinococcus granulosus. Albendazole binds to the colchicine-sensitive site of β-tubulin inhibiting their polymerization into microtubules. The decrease in microtubules in the intestinal cells of the parasites decreases their absorptive function, especially the uptake of glucose by the adult and larval forms of the parasites, and depletes glycogen storage. Insufficient glucose results in insufficient energy for the production of adenosine trisphosphate (ATP) and the parasite eventually dies. Albendazole developed in 1975. It is on the World Health Organization's List of Essential Medicines, the most important medications needed in a basic health system. The incidence of side effects reported in the published literature is very low, with only gastrointestinal side effects occurring with an overall frequency of just >1% . Albendazole's unique broad-spectrum activity is exemplified in the overall cure rates calculated from studies employing the recommended doses for hookworm (78% in 68 studies: 92%, for A. duodenale in 23 studies and 75% for N. americanus in 30 studies), A. lumbricoides (95% in 64 studies), T. trichiura (48% in 57 studies), E. vermicularis (98% in 27 studies), S. stercoralis (62% in 19 studies), H. nana (68% in 11 studies), and Taenia spp. (85% in 7 studies).

Class (Stereo):
CHEMICAL (ACHIRAL)



Clomipramine is an antidepressant drug which was approved by FDA for the treatment of Obsessive-Compulsive Disorder. The exact mechanism of its action is unknown, however it is supposed that it may exert its effect by inhibiting serotonin reuptake.
Nimodipine is a dihydropyridine calcium antagonist which has been shown to dilate cerebral arterioles and increase cerebral blood flow in animals and humans. It has potential in the treatment of a range of cerebrovascular disorders. Major interest to date, however, has focused on its use in the prevention and treatment of the delayed ischaemic neurological deficits that frequently occur in patients with subarachnoid haemorrhages as a result of sustained cerebral vasospasm. Nimodipine, a Ca2+ antagonist with cerebrovasodilatory and anti-ischemic effects, binds to rat, guinea pig, and human brain membranes with high affinity (less than 1 nM). Only at higher concentrations has nimodipine been reported to block the release of some neurotransmitters and hormones from neuronal tissue.
Cetirizine, a human metabolite of hydroxyzine, is an antihistamine; its principal effects are mediated via selective inhibition of peripheral H1 receptors. It is indicated for the relief of nasal and non-nasal symptoms associated with seasonal or perennial allergic rhinitis, hay fever and chronic idiopathic urticaria. Commonly reported adverse reactions of cetirizine include headache, dry mouth and drowsiness or fatigue. Pharmacokinetic interaction studies with Cetirizine in adults were conducted with pseudoephedrine, antipyrine, ketoconazole, erythromycin and azithromycin. No interactions were observed.
Nicardipine is a potent calcium channel blockader with marked vasodilator action used to treat high blood pressure and angina. By deforming the channel, inhibiting ion-control gating mechanisms, and/or interfering with the release of calcium from the sarcoplasmic reticulum, nicardipine inhibits the influx of extracellular calcium across the myocardial and vascular smooth muscle cell membranes The decrease in intracellular calcium inhibits the contractile processes of the myocardial smooth muscle cells, causing dilation of the coronary and systemic arteries, increased oxygen delivery to the myocardial tissue, decreased total peripheral resistance, decreased systemic blood pressure, and decreased afterload.
Mesalamine, also known as Mesalazine or 5-aminosalicylic acid (5-ASA), is an anti-inflammatory drug used to treat inflammation of the digestive tract (Crohn's disease) and mild to moderate ulcerative colitis. Mesalazine is a bowel-specific aminosalicylate drug that is metabolized in the gut and has its predominant actions there, thereby having fewer systemic side effects. As a derivative of salicylic acid, 5-ASA is also an antioxidant that traps free radicals, which are potentially damaging by-products of metabolism. Although the mechanism of action of mesalazine is not fully understood, it appears to be topical rather than systemic. Mucosal production of arachidonic acid metabolites, both through the cyclooxygenase pathways, i.e., prostanoids, and through the lipoxygenase pathways, i.e., leukotrienes and hydroxyeicosatetraenoic acids, is increased in patients with chronic inflammatory bowel disease, and it is possible that mesalazine diminishes inflammation by blocking cyclooxygenase and inhibiting prostaglandin production in the colon. Mesalazine is used for the treatment of active ulcerative proctitis.
Status:
First approved in 1987

Class (Stereo):
CHEMICAL (UNKNOWN)

Targets:


Glufosamide (glucosylifosfamide mustars) consists of iphosphoramide mustard conjugated to glucose, and is an alkylating agent (affecting the ability of the cancer cell to multiply by causing breakage of the DNA strands). Glufosamide is considered a targeted chemotherapy with fewer side effects than alternative chemotherapies. Its specific mode of action on normal and pathological cells is still under investigation. Glufosamide was studied for use in several cancers, like pancreatic and prostate cancer, and head and neck squamous cell carcinoma. Multipe clinical trials have been completed or are still ongoing. Most promising results were found when glufosamide was used in combination treatments, rather than alone.
Amlodipine is a dihydropyridine calcium antagonist (calcium ion antagonist or slow-channel blocker) that inhibits the transmembrane influx of calcium ions into vascular smooth muscle and cardiac muscle. Experimental data suggest that amlodipine binds to both dihydropyridine and nondihydropyridine binding sites. The contractile processes of cardiac muscle and vascular smooth muscle are dependent upon the movement of extracellular calcium ions into these cells through specific ion channels. Amlodipine inhibits calcium ion influx across cell membranes selectively, with a greater effect on vascular mooth muscle cells than on cardiac muscle cells. Amlodipine is indicated for the treatment of hypertension and coronary artery disease.