{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Search results for dexamethasone root_codes_WIKIPEDIA in WIKIPEDIA (approximate match)
Status:
US Approved Rx
(2020)
Source:
ANDA210966
(2020)
Source URL:
First approved in 1958
Source:
DECADRON by MERCK
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Dexamethasone acetate (NEOFORDEX®) is the acetate salt form of dexamethasone, which is a synthetic glucocorticoid; it combines high anti-inflammatory effects with low mineralocorticoid activity. At high doses (e.g. 40 mg), it reduces the immune response. Dexamethasone acetate (NEOFORDEX®) is indicated in adults for the treatment of symptomatic multiple myeloma in combination with other medicinal products. Dexamethasone has been shown to induce multiple myeloma cell death (apoptosis) via a down-regulation of nuclear factor-κB activity and an activation of caspase-9 through second mitochondria-derived activator of caspase (Smac; an apoptosis promoting factor) release. Prolonged exposure was required to achieve maximum levels of apoptotic markers along with increased caspase-3 activation and DNA fragmentation. Dexamethasone also down-regulated anti apoptotic genes and increased IκB-alpha protein levels. Dexamethasone apoptotic activity is enhanced by the combination with thalidomide or its analogues and with proteasome inhibitor (e.g. bortezomib).
Status:
US Approved Rx
(2020)
Source:
ANDA210966
(2020)
Source URL:
First approved in 1958
Source:
DECADRON by MERCK
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Dexamethasone acetate (NEOFORDEX®) is the acetate salt form of dexamethasone, which is a synthetic glucocorticoid; it combines high anti-inflammatory effects with low mineralocorticoid activity. At high doses (e.g. 40 mg), it reduces the immune response. Dexamethasone acetate (NEOFORDEX®) is indicated in adults for the treatment of symptomatic multiple myeloma in combination with other medicinal products. Dexamethasone has been shown to induce multiple myeloma cell death (apoptosis) via a down-regulation of nuclear factor-κB activity and an activation of caspase-9 through second mitochondria-derived activator of caspase (Smac; an apoptosis promoting factor) release. Prolonged exposure was required to achieve maximum levels of apoptotic markers along with increased caspase-3 activation and DNA fragmentation. Dexamethasone also down-regulated anti apoptotic genes and increased IκB-alpha protein levels. Dexamethasone apoptotic activity is enhanced by the combination with thalidomide or its analogues and with proteasome inhibitor (e.g. bortezomib).
Status:
US Approved Rx
(2014)
Source:
ANDA202996
(2014)
Source URL:
First approved in 1957
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Norethisterone (INN, BAN), also known as Norethindrone (USAN) (brand names Micronor, AYGESTIN, numerous others) is a synthetic progestational hormone (progestin) with actions similar to those of progesterone but functioning as a more potent inhibitor of ovulation. It has weak estrogenic and androgenic properties. The hormone has been used for the treatment of secondary amenorrhea, endometriosis, and abnormal uterine bleeding due to hormonal imbalance in the absence of organic pathology, such as submucous fibroids or uterine cancer. AYGESTIN® is not intended, recommended or approved to be used with oncomitant estrogen therapy in postmenopausal women for endometrial protection. Progestins diffuse freely into target cells and bind to the progesterone receptor. Target cells include the female reproductive tract, the mammary gland, the hypothalamus, and the pituitary. Once bound to the receptor, progestins slow the frequency of release of gonadotropin releasing hormone (GnRH) from the hypothalamus and blunt the pre-ovulatory LH surge. Allergic reaction could be: Itching or hives, swelling in your face or hands, swelling or tingling in your mouth or throat, chest tightness, trouble breathing.
Status:
US Approved Rx
(2004)
Source:
ANDA040612
(2004)
Source URL:
First approved in 1957
Source:
NDA011153
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Methylprednisolone is a prednisolone derivative with similar anti-inflammatory and immunosuppressive action. It is adjunctive therapy for short-term administration in rheumatoid arthritis. It is indicated in the following conditions: endocrine disorders, rheumatic disorders, collagen diseases, allergic states etc. Methylprednisolone is marketed in the USA and Canada under the brand names Medrol and Solu-Medrol. Methylprednisolone is a GR receptor agonist.
Status:
US Approved Rx
(2022)
Source:
ANDA216715
(2022)
Source URL:
First approved in 1955
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Prednisolone is a synthetic adrenocortical steroid drug with predominantly glucocorticoid properties. Some of these properties reproduce the physiological actions of endogenous glucocorticosteroids, but others do not necessarily reflect any of the adrenal hormones’ normal functions; they are seen only after administration of large therapeutic doses of the drug. The pharmacological effects of prednisolone which are due to its glucocorticoid properties include: promotion of gluconeogenesis; increased deposition of glycogen in the liver; inhibition of the utilization of glucose; anti-insulin activity; increased catabolism of protein; increased lipolysis; stimulation of fat synthesis and storage; increased glomerular filtration rate and resulting increase in urinary excretion of urate (creatinine excretion remains unchanged); and increased calcium excretion. Prednisolone is used to treat certain types of allergies, inflammatory conditions, autoimmune disorders, and cancers. Some of these conditions include adrenocortical insufficiency, high blood calcium, rheumatoid arthritis, dermatitis, eye inflammation, asthma, and multiple sclerosis.
Status:
US Approved Rx
(1998)
Source:
ANDA075043
(1998)
Source URL:
First approved in 1951
Source:
HYDROCORTONE by MERCK
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Hydrocortisone is the main glucocorticoid secreted by the adrenal cortex. Its synthetic counterpart is used, either as an injection or topically, in the treatment of inflammation, allergy, collagen diseases, asthma, adrenocortical deficiency, shock, and some neoplastic conditions. Topical hydrocortisone is used for its anti-inflammatory or immunosuppressive properties to treat inflammation due to corticosteroid-responsive dermatoses. Hydrocortisone binds to the cytosolic glucocorticoid receptor. After binding the receptor the newly formed receptor-ligand complex translocates itself into the cell nucleus, where it binds to many glucocorticoid response elements (GRE) in the promoter region of the target genes. The DNA bound receptor then interacts with basic transcription factors, causing the increase in expression of specific target genes. The anti-inflammatory actions of corticosteroids are thought to involve lipocortins, phospholipase A2 inhibitory proteins which, through inhibition arachidonic acid, control the biosynthesis of prostaglandins and leukotrienes. Specifically glucocorticoids induce lipocortin-1 (annexin-1) synthesis, which then binds to cell membranes preventing the phospholipase A2 from coming into contact with its substrate arachidonic acid. This leads to diminished eicosanoid production. The cyclooxygenase (both COX-1 and COX-2) expression is also suppressed, potentiating the effect. In other words, the two main products in inflammation Prostaglandins and Leukotrienes are inhibited by the action of Glucocorticoids. Glucocorticoids also stimulate the lipocortin-1 escaping to the extracellular space, where it binds to the leukocyte membrane receptors and inhibits various inflammatory events: epithelial adhesion, emigration, chemotaxis, phagocytosis, respiratory burst and the release of various inflammatory mediators (lysosomal enzymes, cytokines, tissue plasminogen activator, chemokines etc.) from neutrophils, macrophages and mastocytes. Additionally the immune system is suppressed by corticosteroids due to a decrease in the function of the lymphatic system, a reduction in immunoglobulin and complement concentrations, the precipitation of lymphocytopenia, and interference with antigen-antibody binding. For the relief of the inflammatory and pruritic manifestations of corticosteroid-responsive dermatoses. Also used to treat endocrine (hormonal) disorders (adrenal insufficiency, Addisons disease). Hydrocortisone is also used to treat many immune and allergic disorders, such as arthritis, lupus, severe psoriasis, severe asthma, ulcerative colitis, and Crohn's disease.
Status:
US Approved Rx
(2001)
Source:
NDA021265
(2001)
Source URL:
First approved in 1947
Source:
BEROCCA PN by ROCHE
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Retonol, also known as Vitamin A1, is a vitamin found in food and used as a dietary supplement. It is used to treat and prevent vitamin A deficiency. It is also used to prevent further issues in those who have measles. Retinol is used as a metabolic precursor of retinoic acid to treat skin-related conditions, such as cellulite, skin aging, photodamage.
Status:
US Approved Rx
(2015)
Source:
ANDA205256
(2015)
Source URL:
First approved in 1940
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Estradiol an aromatized C18 steroid with hydroxyl group at 3-beta- and 17-beta-position. Estradiol-17-beta is the most potent form of mammalian estrogenic steroids. In humans, it is produced primarily by the cyclic ovaries and the placenta. It is also produced by the adipose tissue of men and postmenopausal women. The 17-alpha-isomer of estradiol binds weakly to estrogen receptors (receptors, estrogen) and exhibits little estrogenic activity in estrogen-responsive tissues. Estradiol enters target cells freely (e.g., female organs, breasts, hypothalamus, pituitary) and interacts with a target cell receptor. When the estrogen receptor has bound its ligand it can enter the nucleus of the target cell, and regulate gene transcription which leads to formation of messenger RNA. The mRNA interacts with ribosomes to produce specific proteins that express the effect of estradiol upon the target cell. Estradiol is used for the treatment of urogenital symptoms associated with post-menopausal atrophy of the vagina (such as dryness, burning, pruritus and dyspareunia) and/or the lower urinary tract (urinary urgency and dysuria). Estradiol is marketed under the brand name Climara (among others), indicated for: the treatment of moderate to severe vasomotor symptoms due to menopause, treatment of symptoms of vulvar and vaginal atrophy due to menopause, treatment of hypoestrogenism due to hypogonadism, castration or primary ovarian failure and prevention of postmenopausal osteoporosis.
Status:
US Approved Rx
(1978)
Source:
ANDA085998
(1978)
Source URL:
First marketed in 1921
Source:
Sodium Chloride U.S.P.
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Hydroxocobalamin (also hydroxycobalamin, OHCbl) is a natural form, or vitamer, of vitamin B12. It is a member of the cobalamin family of compounds. Hydroxocobalamin, the active ingredient in Cyanokit, is cobinamide dihydroxide dihydrogen phosphate (ester), mono (inner salt), 3’-ester with 5,6-dimethyl-1-α-D-ribofuranosyl-1H-benzimidazole. The drug substance is the hydroxylated active form of vitamin B12 and is a large molecule in which a trivalent cobalt ion is coordinated in four positions by a tetrapyrol (or corrin) ring. It is a hygroscopic, odorless, dark red, crystalline powder that is freely soluble in water and ethanol, and practically insoluble in acetone and diethyl ether. Cyanokit contains hydroxocobalamin, an antidote indicated for the treatment of known or suspected cyanide poisoning. Cyanide is an extremely toxic poison. In the absence of rapid and adequate treatment, exposure to a high dose of cyanide can result in death within minutes due to the inhibition of cytochrome oxidase resulting in arrest of cellular respiration. Specifically, cyanide binds rapidly with cytochrome a3, a component of the cytochrome c oxidase complex in mitochondria. Inhibition of cytochrome a3 prevents the cell from using oxygen and forces anaerobic metabolism, resulting in lactate production, cellular hypoxia and metabolic acidosis. In massive acute cyanide poisoning, the mechanism of toxicity may involve other enzyme systems as well. Signs and symptoms of acute systemic cyanide poisoning may develop rapidly within minutes, depending on the route and extent of cyanide exposure. The action of Cyanokit is based on its ability to bind cyanide ions. Each hydroxocobalamin molecule can bind one cyanide ion by substituting it for the hydroxo ligand linked to the trivalent cobalt ion, to form cyanocobalamin, which is then excreted in the urine.
Status:
US Approved Rx
(1986)
Source:
ANDA070755
(1986)
Source URL:
First marketed in 1921
Source:
Lithium Salicylate N.F.
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Lithium is an alkali metal widely used in industry. Lithium salts are indicated in the treatment of manic episodes of Bipolar Disorder. The use of lithium in psychiatry goes back to the mid-19th century. Early work, however, was soon forgotten, and John Cade is credited with reintroducing lithium to psychiatry for mania in 1949. Mogens Schou undertook a randomly controlled trial for mania in 1954, and in the course of that study became curious about lithium as a prophylactic for depressive illness. In 1970, the United States became the 50th country to admit lithium to the marketplace. The specific mechanisms by which lithium exerts its mood-stabilizing effects are not well understood. Lithium appears to preserve or increase the volume of brain structures involved in emotional regulation such as the prefrontal cortex, hippocampus and amygdala, possibly reflecting its neuroprotective effects. At a neuronal level, lithium reduces excitatory (dopamine and glutamate) but increases inhibitory (GABA) neurotransmission; however, these broad effects are underpinned by complex neurotransmitter systems that strive to achieve homeostasis by way of compensatory changes. For example, at an intracellular and molecular level, lithium targets second-messenger systems that further modulate neurotransmission. For instance, the effects of lithium on the adenyl cyclase and phospho-inositide pathways, as well as protein kinase C, may serve to dampen excessive excitatory neurotransmission. In addition to these many putative mechanisms, it has also been proposed that the neuroprotective effects of lithium are key to its therapeutic actions. In this regard, lithium has been shown to reduce the oxidative stress that occurs with multiple episodes of mania and depression. Further, it increases protective proteins such as brain-derived neurotrophic factor and B-cell lymphoma 2, and reduces apoptotic processes through inhibition of glycogen synthase kinase 3 and autophagy.