{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Restrict the search for
testosterone propionate
to a specific field?
There is one exact (name or code) match for testosterone propionate
Status:
US Approved Rx
(2022)
Source:
NDA213953
(2022)
Source URL:
First marketed in 1937
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Testosterone is a steroid sex hormone found in both men and women. In men, testosterone is produced primarily by the Leydig (interstitial) cells of the testes when stimulated by luteinizing hormone (LH). It functions to stimulate spermatogenesis, promote physical and functional maturation of spermatozoa, maintain accessory organs of the male reproductive tract, support development of secondary sexual characteristics, stimulate growth and metabolism throughout the body and influence brain development by stimulating sexual behaviors and sexual drive. In women, testosterone is produced by the ovaries (25%), adrenals (25%) and via peripheral conversion from androstenedione (50%). Testerone in women functions to maintain libido and general wellbeing. Testosterone exerts a negative feedback mechanism on pituitary release of LH and follicle-stimulating hormone (FSH). Testosterone may be further converted to dihydrotestosterone or estradiol depending on the tissue. The effects of testosterone in humans and other vertebrates occur by way of two main mechanisms: by activation of the androgen receptor (directly or as DHT), and by conversion to estradiol and activation of certain estrogen receptors. Free testosterone (T) is transported into the cytoplasm of target tissue cells, where it can bind to the androgen receptor, or can be reduced to 5α-dihydrotestosterone (DHT) by the cytoplasmic enzyme 5α-reductase. DHT binds to the same androgen receptor even more strongly than T, so that its androgenic potency is about 2.5 times that of T. The T-receptor or DHT-receptor complex undergoes a structural change that allows it to move into the cell nucleus and bind directly to specific nucleotide sequences of the chromosomal DNA. The areas of binding are called hormone response elements (HREs), and influence transcriptional activity of certain genes, producing the androgen effects. Testosterone is used as hormone replacement or substitution of diminished or absent endogenous testosterone. Use in males: For management of congenital or acquired hypogonadism, hypogonadism associated with HIV infection, and male climacteric (andopause). Use in females: For palliative treatment of androgen-responsive, advanced, inoperable, metastatis (skeletal) carcinoma of the breast in women who are 1-5 years postmenopausal; testosterone esters may be used in combination with estrogens in the management of moderate to severe vasomotor symptoms associated with menopause in women who do not respond to adequately to estrogen therapy alone.
Status:
US Approved Rx
(2022)
Source:
NDA213953
(2022)
Source URL:
First marketed in 1937
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Testosterone is a steroid sex hormone found in both men and women. In men, testosterone is produced primarily by the Leydig (interstitial) cells of the testes when stimulated by luteinizing hormone (LH). It functions to stimulate spermatogenesis, promote physical and functional maturation of spermatozoa, maintain accessory organs of the male reproductive tract, support development of secondary sexual characteristics, stimulate growth and metabolism throughout the body and influence brain development by stimulating sexual behaviors and sexual drive. In women, testosterone is produced by the ovaries (25%), adrenals (25%) and via peripheral conversion from androstenedione (50%). Testerone in women functions to maintain libido and general wellbeing. Testosterone exerts a negative feedback mechanism on pituitary release of LH and follicle-stimulating hormone (FSH). Testosterone may be further converted to dihydrotestosterone or estradiol depending on the tissue. The effects of testosterone in humans and other vertebrates occur by way of two main mechanisms: by activation of the androgen receptor (directly or as DHT), and by conversion to estradiol and activation of certain estrogen receptors. Free testosterone (T) is transported into the cytoplasm of target tissue cells, where it can bind to the androgen receptor, or can be reduced to 5α-dihydrotestosterone (DHT) by the cytoplasmic enzyme 5α-reductase. DHT binds to the same androgen receptor even more strongly than T, so that its androgenic potency is about 2.5 times that of T. The T-receptor or DHT-receptor complex undergoes a structural change that allows it to move into the cell nucleus and bind directly to specific nucleotide sequences of the chromosomal DNA. The areas of binding are called hormone response elements (HREs), and influence transcriptional activity of certain genes, producing the androgen effects. Testosterone is used as hormone replacement or substitution of diminished or absent endogenous testosterone. Use in males: For management of congenital or acquired hypogonadism, hypogonadism associated with HIV infection, and male climacteric (andopause). Use in females: For palliative treatment of androgen-responsive, advanced, inoperable, metastatis (skeletal) carcinoma of the breast in women who are 1-5 years postmenopausal; testosterone esters may be used in combination with estrogens in the management of moderate to severe vasomotor symptoms associated with menopause in women who do not respond to adequately to estrogen therapy alone.
Status:
US Approved Rx
(2024)
Source:
NDA217202
(2024)
Source URL:
First approved in 2024
Source:
NDA217202
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Landiolol (Onoact) is an intravenously administered, ultra short-acting β1-blocker with an elimination half-life of 3-4 min and ≈8-fold greater cardioselectivity than esmolol in vitro. It is approved in Japan for the treatment of intraoperative and postoperative tachyarrhythmias, but in clinical practice is also used to prevent postoperative tachyarrhythmias, such as atrial fibrillation after coronary artery bypass grafting. Randomized controlled trials in patients undergoing open-heart surgery demonstrated that various dosages of landiolol (0.0005-0.04 mg/kg/min) [0.5-40 μg/kg/min] were more effective than diltiazem in converting postoperative atrial fibrillation to normal sinus rhythm during the first 8 h after surgery, and were more effective than placebo (or no landiolol) in preventing the development of atrial fibrillation during the first week after surgery (primary efficacy endpoints). Landiolol was generally well tolerated in clinical trials, with a relatively low risk of hypotension and bradycardia, although routine monitoring of cardiac function during landiolol administration is important. In general, adverse events such as reduced blood pressure resolve quickly after discontinuation of landiolol. Thus, as an ultra short-acting β1-blocker with a rapid onset of action and readily titratable and rapidly reversible effects, landiolol represents an important agent for the management of intraoperative and postoperative tachyarrhythmias.
Status:
US Approved Rx
(2023)
Source:
NDA216578
(2023)
Source URL:
First approved in 2023
Source:
NDA216578
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Fezolinetant (VEOZAH™) is an oral, small molecule, neurokinin 3 receptor (NK3R) antagonist, which is being developed by Astellas Pharma Inc. for the treatment of moderate to severe vasomotor symptoms (VMS) or hot flashes due to menopause. Inhibiting NK3R-mediated signaling in the central nervous system is a non-hormonal strategy to modulate the activity of neurons that are associated with thermoregulation, thereby reducing the frequency and severity of VMS. VEOZAH is a neurokinin 3 (NK3) receptor antagonist that blocks neurokinin B (NKB) binding on the kisspeptin/neurokinin B/dynorphin (KNDy) neuron to modulate neuronal activity in the thermoregulatory center. Fezolinetant has a high affinity for the NK3 receptor (Ki value of 19.9 to 22.1 nmol/L), which is more than 450-fold higher than the binding affinity to NK1 or NK2 receptors. Fezolinetant received its first approval in the USA in May 2023 for the treatment of moderate to severe VMS due to menopause.
Status:
US Approved Rx
(2022)
Source:
NDA215888
(2022)
Source URL:
First approved in 2022
Source:
NDA215888
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Oteseconazole (VIVJOA™) is an orally administered azole antifungal agent developed by Mycovia Pharmaceuticals for the treatment of fungal infections. It inhibits cytochrome P450 (CYP) 51, thereby affecting the formation and integrity of the fungal cell membrane, but has a low affinity for human CYP enzymes due to its tetrazole metal-binding group. Oteseconazole is the first agent to be approved (in April 2022) for recurrent vulvovaginal candidiasis (RVVC) in the USA, where it is indicated to reduce the incidence of RVVC in females with a history of RVVC who are NOT of reproductive potential. Clinical development for the treatment of onychomycosis, and invasive and opportunistic infections is ongoing.
Status:
US Approved Rx
(2020)
Source:
NDA213433
(2020)
Source URL:
First approved in 2020
Source:
NDA213433
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Cortexolone 17α-propionate (WINLEVI, BREEZULA) is a steroid belonging to the family of cortexolone derivatives. It is a topical and peripherally selective androgen antagonist. WINLEVI is used for the treatment of acne and has completed Phase II clinical trials and Phase III trials. BREEZULA is used for the treatment of androgenic alopecia and is currently undergoing a Phase II trial in the US.
Status:
US Approved Rx
(2018)
Source:
NDA210455
(2018)
Source URL:
First approved in 2012
Source:
NDA203100
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Cobicistat (GS-9350) is a potent, and selective inhibitor of human cytochrome P450 3A (CYP3A) enzymes. Cobicistat is a pharmacokinetic booster of several antiretrovirals. TYBOST (cobicistat) is indicated to increase systemic exposure of atazanavir or darunavir in combination with other antiretroviral agents in the treatment of HIV-1 infection.
Status:
US Approved Rx
(2018)
Source:
ANDA203153
(2018)
Source URL:
First approved in 2007
Source:
NDA022088
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Temsirolimus is an intravenous drug for the treatment of renal cell carcinoma (RCC), developed by Wyeth Pharmaceuticals and approved by the FDA in late May 2007, and was also approved by the European Medicines Agency (EMEA) on November 2007. It is a derivative of sirolimus and is sold as Torisel. Temsirolimus is an inhibitor of mTOR (mammalian target of rapamycin). Temsirolimus binds to an intracellular protein (FKBP-12), and the protein-drug complex inhibits the activity of mTOR that controls cell division. Inhibition of mTOR activity resulted in a G1 growth arrest in treated tumor cells. When mTOR was inhibited, its ability to phosphorylate p70S6k and S6 ribosomal protein, which are downstream of mTOR in the PI3 kinase/AKT pathway was blocked. In in vitro studies using renal cell carcinoma cell lines, temsirolimus inhibited the activity of mTOR and resulted in reduced levels of the hypoxia-inducible factors HIF-1 and HIF-2 alpha, and the vascular endothelial growth factor.
Status:
US Approved Rx
(2001)
Source:
NDA021319
(2001)
Source URL:
First approved in 2001
Source:
NDA021319
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Dutasteride is a synthetic 4-azasteroid compound that is a selective inhibitor of both the type 1 and type 2 isoforms of steroid 5 alpha-reductase (5AR), intracellular enzymes that convert testosterone to 5 alpha-dihydrotestosterone (DHT). Type I 5a-reductase is predominant in the sebaceous glands of most regions of skin, including scalp, and liver. Type I 5a-reductase is responsible for approximately one-third of circulating DHT. The Type II 5a-reductase isozyme is primarily found in prostate, seminal vesicles, epididymides, and hair follicles as well as liver, and is responsible for two-thirds of circulating DHT. Dutasteride inhibits the conversion of testosterone to 5 alpha-dihydrotestosterone (DHT), which is the androgen primarily responsible for the initial development and subsequent enlargement of the prostate gland. Testosterone is converted to DHT by the enzyme 5 alpha-reductase, which exists as 2 isoforms, type 1 and type 2. Dutasteride is a competitive and specific inhibitor of both type 1 and type 2 5 alpha-reductase isoenzymes, with which it forms a stable enzyme complex. Dissociation from this complex has been evaluated under in vitro and in vivo conditions and is extremely slow. Used for the treatment of symptomatic benign prostatic hyperplasia (BPH) in men with an enlarged prostate gland to improve symptoms, and reduce the risk of acute urinary retention and the need for surgery. Marketed under the brand name Avodart.
Status:
US Approved Rx
(2013)
Source:
ANDA091643
(2013)
Source URL:
First approved in 1992
Source:
NDA020180
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Finasteride is a synthetic 4-azasteroid compound. This drug is a competitive and specific inhibitor of Type II 5a-reductase, an intracellular enzyme that converts the androgen testosterone into 5α-dihydrotestosterone (DHT). Two distinct isozymes are found in mice, rats, monkeys, and humans: Type I and II. Each of these isozymes is differentially expressed in tissues and developmental stages. In humans, Type I 5a-reductase is predominant in the sebaceous glands of most regions of skin, including scalp, and liver. Type I 5a-reductase is responsible for approximately one-third of circulating DHT. The Type II 5a-reductase isozyme is primarily found in prostate, seminal vesicles, epididymides, and hair follicles as well as liver, and is responsible for two-thirds of circulating DHT. Although finasteride is 100-fold more selective for type II 5a-reductase than for the type I isoenzyme, chronic treatment with this drug may have some effect on type I 5a-reductase. Finasteride is used for the treatment of symptomatic benign prostatic hyperplasia (BPH) in men with an enlarged prostate to: Improve symptoms, reduce the risk of acute urinary retention, reduce the risk of the need for surgery including transurethral resection of the prostate. Also used for the stimulation of regrowth of hair in men with mild to moderate androgenetic alopecia (male pattern alopecia, hereditary alopecia, common male baldness). Finasteride is sold under the brand names Proscar and Propecia among others.
Status:
US Approved Rx
(2007)
Source:
ANDA077236
(2007)
Source URL:
First approved in 1991
Source:
DERMATOP by VALEANT PHARMS NORTH
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Prednicarbate is a relatively new topical corticosteroid drug. It is similar in potency to hydrocortisone. It has a favorable benefit-risk ratio, with an inflammatory action similar to that of a medium potency corticosteroid, but with a low potential to cause skin atrophy. DERMATOP Ointment (prednicarbate ointment) 0.1% is a medium potency corticosteroid indicated for the relief of the inflammatory and pruritic manifestations of corticosteroid responsive dermatoses. Like other topical corticosteroids, prednicarbate has anti-inflammatory, anti-pruritic and vasoconstrictive properties. The mechanism of the anti-inflammatory activity of the topical steroids, in general, is unclear. However, corticosteroids are thought to act by the induction of phospholipase A2 inhibitory proteins, collectively called lipocortins. It is postulated that these proteins control the biosynthesis of potent mediators of inflammation such as prostaglandins and leukotrienes by inhibiting the release of their common precursor arachidonic acid. Arachidonic acid is released from membrane phospholipids by phospholipase A2. Prednicarbate has a strong correlation between transactivation and glucocorticoid receptor binding.