U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 1 - 10 of 11 results

Ofloxacin is one of a new generation of fluorinated quinolones structurally related to nalidixic acid, primary mechanism of action is inhibition of bacterial DNA gyrase. It is an orally administered broad spectrum antibacterial drug active against most Gram-negative bacteria, many Gram-positive bacteria and some anaerobes. Clinical trials to date have demonstrated the efficacy of ofloxacin in the treatment of lower respiratory tract infections, urinary tract infections, and sexually transmitted diseases. Adverse effects to ofloxacin are usually mild and include gastrointestinal, central nervous system, and hypersensitivity reactions. Also available in solution for treatment of otic and ophthalmic bacterial infections.
Rifampin is an antibiotic that inhibits DNA-dependent RNA polymerase activity in susceptible cells. Specifically, it interacts with bacterial RNA polymerase but does not inhibit the mammalian enzyme. It is bactericidal and has a very broad spectrum of activity against most gram-positive and gram-negative organisms (including Pseudomonas aeruginosa) and specifically Mycobacterium tuberculosis. It is FDA approved for the treatment of tuberculosis, meningococcal carrier state. Healthy subjects who received rifampin 600 mg once daily concomitantly with saquinavir 1000 mg/ritonavir 100 mg twice daily (ritonavir-boosted saquinavir) developed severe hepatocellular toxicity. Rifampin has been reported to substantially decrease the plasma concentrations of the following antiviral drugs: atazanavir, darunavir, fosamprenavir, saquinavir, and tipranavir. These antiviral drugs must not be co-administered with rifampin. Common adverse reactions include heartburn, epigastric distress, anorexia, nausea, vomiting, jaundice, flatulence, cramps.
Status:
Other

Class (Stereo):
CHEMICAL (ABSOLUTE)

Status:
US Previously Marketed
Source:
KANAMYCIN SULFATE by FRESENIUS KABI USA
(2002)
Source URL:
First approved in 1958
Source:
Kantrex by Bristol
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)


Conditions:

Kanamycin A is aminoglycoside anti-bacterial agent. Active against many strains of Gram-negative bacteria and Gram-positive Staphylococcus aureus and epidermis. Some strains of Mycobacterium bacterium are sensitive. Most active in alkaline solution. It binds to bacterial ribosomes and reduces mRNA translation hence reduces protein biosynthesis. However, it also exhibits some toxic effects towards mammalian cells.
Status:
Possibly Marketed Outside US
Source:
Kanamycin, amphomycin, and hydrocortisone ointment
Source URL:

Class (Stereo):
CHEMICAL (EPIMERIC)


Amphomycin is a natural antibacterial lipopeptide initially reported by researchers at Bristol-Myers in 1953 from Streptomyces canus. Lipopeptides are cyclic depsipeptides with a peptidyl side chain capped with a saturated alkyl tail. They preferentially target Gram-positive bacteria and may be useful against drug resistant strains. Amphomycin is closely related to a number of "lost" antibiotics, such as aspartocin, crystallomycin, glumamycin, friulimicin, laspartocin, tsushimycin and zaomycin. Interest in amphomycin was re-awakened with the discovery of friulimicin activity against antibiotic resistant strains. Whole cell analysis by solid-state NMR indicates that in vivo mode of action for amphomycin is complex. While the downstream effect of purine biosynthesis inhibition by amphomycin is unknown, presumably it would directly alter the overall metabolism of bacteria.
Status:
Possibly Marketed Outside US
Source:
Japan:Bekanamycin Sulfate
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Bekanamycin is an aminoglycoside and is a congener of kanamycin. It is given topically as the sulfate for the treatment of eye infections. It is reported to be more toxic than kanamycin A. Antibiotic complex produced by Streptomyces kanamyceticus Okami & Umezawa from Japanese soil. There are no known interactions with other drugs.
mixture
Status:
Possibly Marketed Outside US
Source:
Japan:Kanamycin Monosulfate
Source URL:
First approved in 2022
Source:
Kanamycin Sulfates by KDG Impresa LLC, Aqion
Source URL:

Class:
MIXTURE



Kanamycin (a mixture of kanamycin A, B and C) is an aminoglycoside bacteriocidal antibiotic, available in oral, intravenous, and intramuscular forms, and used to treat a wide variety of infections. It is effective against Gram-negative bacteria and certain Gram-positive bacteria. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit, causing misreading of t-RNA, leaving the bacterium unable to synthesize proteins vital to its growth. Serious side effects include tinnitus or loss of hearing, toxicity to kidneys, and allergic reactions to the drug. Mixing of an aminoglycoside with beta-lactam-type antibiotics (penicillins or cephalosporins) may result in a significant mutual inactivation. Even when an aminoglycoside and a penicillin-type drug are administered separately by different routes, a reduction in aminoglycoside serum half-life or serum levels has been reported in patients with impaired renal function and in some patients with normal renal function.
Ethionamide is a second-line agent, structurally similar to isoniazid, used as a second-line therapy for the treatment of multidrug-resistant tuberculosis or active tuberculosis in case of patient intolerance to other drugs. Depending on its the concentration at the infected site and the susceptibility of the infecting organism it may be bacteriostatic or bactericidal. When used alone rapidly develops bacterial resistance. Ethionamide was approved by FDA in 1965 as TRECATOR manufactured by Wyeth Pharmaceuticals Inc. (purchased by Pfizer in 2009). Ethionamide is specific for Mycobacteria and is thought to exert a toxic effect on mycolic acid components of the bacterial cell wall when activated through intermediate S-oxidation by EtaA. Mycolic acid synthesis was shown to be inhibited by ethionamide in the EthA protein-overexpressing mycobacteria,
Status:
US Previously Marketed
Source:
KANAMYCIN SULFATE by FRESENIUS KABI USA
(2002)
Source URL:
First approved in 1958
Source:
Kantrex by Bristol
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)


Conditions:

Kanamycin A is aminoglycoside anti-bacterial agent. Active against many strains of Gram-negative bacteria and Gram-positive Staphylococcus aureus and epidermis. Some strains of Mycobacterium bacterium are sensitive. Most active in alkaline solution. It binds to bacterial ribosomes and reduces mRNA translation hence reduces protein biosynthesis. However, it also exhibits some toxic effects towards mammalian cells.
Status:
Possibly Marketed Outside US
Source:
Japan:Bekanamycin Sulfate
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Bekanamycin is an aminoglycoside and is a congener of kanamycin. It is given topically as the sulfate for the treatment of eye infections. It is reported to be more toxic than kanamycin A. Antibiotic complex produced by Streptomyces kanamyceticus Okami & Umezawa from Japanese soil. There are no known interactions with other drugs.

Showing 1 - 10 of 11 results