{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
US Previously Marketed
Source:
Quaalude by William Rorer
(1965)
Source URL:
First approved in 1962
Source:
BIPHETAMINE-T by STRASENBURGH
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Methaqualone is a depressant that modulates the activity of the GABA receptors in the brain and nervous system. It promotes relaxation, sleepiness and sometimes a feeling of euphoria. It causes a drop in blood pressure and slows the pulse rate. These properties are the reason why it was initially thought to be a useful sedative and anxiolytic. Common side effects of Methaqualone include dizziness, nausea, vomiting, diarrhea, abdominal cramps, fatigue, itching, rashes, sweating, dry mouth, tingling sensation in arms and legs, seizures and its depressant effects include reduced heart rate and respiration. The drug became banned in many countries and was withdrawn from many markets in the early 1980s.
Status:
US Previously Marketed
Source:
TARACTAN by ROCHE
(1962)
Source URL:
First approved in 1962
Source:
TARACTAN by ROCHE
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Chlorprothixene (Taractan, Tarasan, Truxal) is a thioxanthine derivative developed by Lundbeck for the treatment of psychotic disorders. The drug exerts its activity by binding to and inhibiting serotonin receptors, dopamine receptors, muscarinic acetylcholine receptor, histamine H1 receptor and alpha1-adrenergic receptor.
Status:
US Previously Marketed
Source:
TARACTAN by ROCHE
(1962)
Source URL:
First approved in 1962
Source:
TARACTAN by ROCHE
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Conditions:
Chlorprothixene (Taractan, Tarasan, Truxal) is a thioxanthine derivative developed by Lundbeck for the treatment of psychotic disorders. The drug exerts its activity by binding to and inhibiting serotonin receptors, dopamine receptors, muscarinic acetylcholine receptor, histamine H1 receptor and alpha1-adrenergic receptor.
Status:
US Previously Marketed
Source:
TARACTAN by ROCHE
(1962)
Source URL:
First approved in 1962
Source:
TARACTAN by ROCHE
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Chlorprothixene (Taractan, Tarasan, Truxal) is a thioxanthine derivative developed by Lundbeck for the treatment of psychotic disorders. The drug exerts its activity by binding to and inhibiting serotonin receptors, dopamine receptors, muscarinic acetylcholine receptor, histamine H1 receptor and alpha1-adrenergic receptor.
Status:
First approved in 1960
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
PROTHIPENDYL is a neuroleptic azaphenothiazine used to treat anxiety and agitation in psychotic syndromes. It also shows strong antihistamine and anti-emetic actions.
Status:
First approved in 1960
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
PROTHIPENDYL is a neuroleptic azaphenothiazine used to treat anxiety and agitation in psychotic syndromes. It also shows strong antihistamine and anti-emetic actions.
Status:
US Previously Marketed
Source:
LARGON by HIKMA
(1960)
Source URL:
First approved in 1960
Source:
LARGON by HIKMA
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Conditions:
Propiomazine is a typical antipsychotic, blocking H1 receptors and is primarily indicated in conditions Insomnia. Propiomazine was also used under brand name largon for the relief of restlessness and apprehension, preoperatively or during surgery. In addition largon was used as an adjunct to analgesics for the relief of restlessness and apprehension during labor. But this drug was discontinued.
Status:
First approved in 1960
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Clemizole is a drug in clinical development for the treatment of hepatitis C virus (HCV) infection. Clemizole is a novel inhibitor of TRPC5 channels. Clemizole is an H1 antagonist. Clemizole, an antihistamine drug that was once widely used for treatment of allergic disease, was recently discovered to be a potent inhibitor (IC50, 24 nM) of the interaction between an HCV protein (NS4B) and HCV RNA. Although clemizole was widely used during the 1950s and 1960s, this was before contemporary regulatory requirements were established for new drug development, and there is very minimal information about its pharmacokinetics and metabolism.
Status:
First approved in 1960
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Clemizole is a drug in clinical development for the treatment of hepatitis C virus (HCV) infection. Clemizole is a novel inhibitor of TRPC5 channels. Clemizole is an H1 antagonist. Clemizole, an antihistamine drug that was once widely used for treatment of allergic disease, was recently discovered to be a potent inhibitor (IC50, 24 nM) of the interaction between an HCV protein (NS4B) and HCV RNA. Although clemizole was widely used during the 1950s and 1960s, this was before contemporary regulatory requirements were established for new drug development, and there is very minimal information about its pharmacokinetics and metabolism.
Status:
First approved in 1960
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Clemizole is a drug in clinical development for the treatment of hepatitis C virus (HCV) infection. Clemizole is a novel inhibitor of TRPC5 channels. Clemizole is an H1 antagonist. Clemizole, an antihistamine drug that was once widely used for treatment of allergic disease, was recently discovered to be a potent inhibitor (IC50, 24 nM) of the interaction between an HCV protein (NS4B) and HCV RNA. Although clemizole was widely used during the 1950s and 1960s, this was before contemporary regulatory requirements were established for new drug development, and there is very minimal information about its pharmacokinetics and metabolism.