U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 671 - 680 of 693 results

Niclosamide is an antihelminth used against tapeworm infections. It may act by the uncoupling of the electron transport chain to ATP synthase. The disturbance of this crucial metabolic pathway prevents creation of adenosine tri-phosphate (ATP), an essential molecule that supplies energy for metabolism. Niclosamide works by killing tapeworms on contact. Adult worms (but not ova) are rapidly killed, presumably due to uncoupling of oxidative phosphorylation or stimulation of ATPase activity. The killed worms are then passed in the stool or sometimes destroyed in the intestine. Niclosamide may work as a molluscicide by binding to and damaging DNA. Niclosamide is used for the treatment of tapeworm and intestinal fluke infections: Taenia saginata (Beef Tapeworm), Taenia solium (Pork Tapeworm), Diphyllobothrium latum (Fish Tapeworm), Fasciolopsis buski (large intestinal fluke). Niclosamide is also used as a molluscicide in the control of schistosomiasis. Niclosamide was marketed under the trade name Niclocide, now discontinued.
Status:
US Previously Marketed
Source:
Zomax by McNeil
(1980)
Source URL:
First approved in 1980
Source:
Zomax by McNeil
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)


Conditions:

Zomepirac Sodium (Zomax) is a pyrrole-acetic acid structurally related to tolmetin sodium. Zomepirac is a prostaglandin synthetase inhibitor and is not an opioid, an opioid antagonist, or a salicylate. Zomepirac was approved by the Food and Drug Administration for marketing in the United States as an analgesic. It was indicated for all forms of mild to moderately severe pain, and was being promoted as a "comprehensive, non-addicting analgesic." Later Zomepirac was found to be associated with fatal and near-fatal anaphylactoid reactions. The manufacturer voluntarily removed Zomax tablets from the Canadian, US, and UK markets in March 1983.
Status:
US Previously Marketed
Source:
Zomax by McNeil
(1980)
Source URL:
First approved in 1980
Source:
Zomax by McNeil
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)


Conditions:

Zomepirac Sodium (Zomax) is a pyrrole-acetic acid structurally related to tolmetin sodium. Zomepirac is a prostaglandin synthetase inhibitor and is not an opioid, an opioid antagonist, or a salicylate. Zomepirac was approved by the Food and Drug Administration for marketing in the United States as an analgesic. It was indicated for all forms of mild to moderately severe pain, and was being promoted as a "comprehensive, non-addicting analgesic." Later Zomepirac was found to be associated with fatal and near-fatal anaphylactoid reactions. The manufacturer voluntarily removed Zomax tablets from the Canadian, US, and UK markets in March 1983.
Status:
US Previously Marketed
First approved in 1966

Class (Stereo):
CHEMICAL (ABSOLUTE)



Levomepromazine (also known as methotrimeprazine) is a phenothiazine neuroleptic drug. It is sold in many countries under the generic name (levomepromazine) or under brand names such as Nozinan, Detenler and many more. Levomepromazine is an antipsychotic drug is commonly used as an antiemetic to alleviate nausea and vomiting in palliative care settings particularly in terminal illness. Levomepromazine is a phenothiazine with pharmacological activity similar to that of both chlorpromazine and promethazine. It has the histamine-antagonist properties of the antihistamines together with central nervous system effects resembling those of chlorpromazine. Levomepromazine's antipsychotic effect is largely due to its antagonism of dopamine receptors in the brain. In addition, it can block 5HT2 receptors and some others, like histamine, serotonin.
Status:
US Previously Marketed
First approved in 1966

Class (Stereo):
CHEMICAL (ABSOLUTE)



Levomepromazine (also known as methotrimeprazine) is a phenothiazine neuroleptic drug. It is sold in many countries under the generic name (levomepromazine) or under brand names such as Nozinan, Detenler and many more. Levomepromazine is an antipsychotic drug is commonly used as an antiemetic to alleviate nausea and vomiting in palliative care settings particularly in terminal illness. Levomepromazine is a phenothiazine with pharmacological activity similar to that of both chlorpromazine and promethazine. It has the histamine-antagonist properties of the antihistamines together with central nervous system effects resembling those of chlorpromazine. Levomepromazine's antipsychotic effect is largely due to its antagonism of dopamine receptors in the brain. In addition, it can block 5HT2 receptors and some others, like histamine, serotonin.
Status:
US Previously Marketed
First approved in 1966

Class (Stereo):
CHEMICAL (ABSOLUTE)



Levomepromazine (also known as methotrimeprazine) is a phenothiazine neuroleptic drug. It is sold in many countries under the generic name (levomepromazine) or under brand names such as Nozinan, Detenler and many more. Levomepromazine is an antipsychotic drug is commonly used as an antiemetic to alleviate nausea and vomiting in palliative care settings particularly in terminal illness. Levomepromazine is a phenothiazine with pharmacological activity similar to that of both chlorpromazine and promethazine. It has the histamine-antagonist properties of the antihistamines together with central nervous system effects resembling those of chlorpromazine. Levomepromazine's antipsychotic effect is largely due to its antagonism of dopamine receptors in the brain. In addition, it can block 5HT2 receptors and some others, like histamine, serotonin.
Status:
US Previously Marketed
Source:
Somnafac by Smith Miller
(1972)
Source URL:
First approved in 1962
Source:
BIPHETAMINE-T by STRASENBURGH
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Methaqualone is a depressant that modulates the activity of the GABA receptors in the brain and nervous system. It promotes relaxation, sleepiness and sometimes a feeling of euphoria. It causes a drop in blood pressure and slows the pulse rate. These properties are the reason why it was initially thought to be a useful sedative and anxiolytic. Common side effects of Methaqualone include dizziness, nausea, vomiting, diarrhea, abdominal cramps, fatigue, itching, rashes, sweating, dry mouth, tingling sensation in arms and legs, seizures and its depressant effects include reduced heart rate and respiration. The drug became banned in many countries and was withdrawn from many markets in the early 1980s.
Status:
US Previously Marketed
Source:
Hydergine by Sandoz
(1951)
Source URL:
First approved in 1951

Class (Stereo):
CHEMICAL (ABSOLUTE)



Dihydro-alpha-ergocryptine is an ergot alkaloid that has an agonist activity on D2 dopaminergic receptors and a partial agonist activity on D1 receptors. It also demonstrated antagonistic activity towards alpha-adrenergic receptors. The drug was approved by FDA in combination with other alkaloids (dihydroergocornine, dihydroergocristine and dihydro-beta-ergocryptine mesylate salts) under the name Hydergine for the treatment of dimentia and cerebrovascular insufficiency.
Status:
US Previously Marketed
Source:
CAMOPRIM CT AMODIAQUINE by PD
(1961)
Source URL:
First approved in 1950

Class (Stereo):
CHEMICAL (ACHIRAL)


Conditions:

Amodiaquine is a medication used to treat malaria, including Plasmodium falciparum malaria when uncomplicated. The mechanism of plasmodicidal action of amodiaquine is not completely certain. Like other quinoline derivatives, it is thought to inhibit heme polymerase activity. This results in accumulation of free heme, which is toxic to the parasites. The drug binds the free heme preventing the parasite from converting it to a form less toxic. This drug-heme complex is toxic and disrupts membrane function. The side effects of amodiaquine are generally minor to moderate and are similar to those of chloroquine. Rarely liver problems or low blood cell levels may occur. When taken in excess headaches, trouble seeing, seizures, and cardiac arrest may occur. After oral administration amodiaquine hydrochloride is rapidly absorbed,and undergoes rapid and extensive metabolism to desethylamodiaquine which concentrates in red blood cells. It is likely that desethylamodiaquine, not amodiaquine, is responsible for most of the observed antimalarial activity, and that the toxic effects of amodiaquine after oral administration may in part be due to desethylamodiaquine.
Status:
US Previously Marketed
Source:
CAMOPRIM CT AMODIAQUINE by PD
(1961)
Source URL:
First approved in 1950

Class (Stereo):
CHEMICAL (ACHIRAL)


Conditions:

Amodiaquine is a medication used to treat malaria, including Plasmodium falciparum malaria when uncomplicated. The mechanism of plasmodicidal action of amodiaquine is not completely certain. Like other quinoline derivatives, it is thought to inhibit heme polymerase activity. This results in accumulation of free heme, which is toxic to the parasites. The drug binds the free heme preventing the parasite from converting it to a form less toxic. This drug-heme complex is toxic and disrupts membrane function. The side effects of amodiaquine are generally minor to moderate and are similar to those of chloroquine. Rarely liver problems or low blood cell levels may occur. When taken in excess headaches, trouble seeing, seizures, and cardiac arrest may occur. After oral administration amodiaquine hydrochloride is rapidly absorbed,and undergoes rapid and extensive metabolism to desethylamodiaquine which concentrates in red blood cells. It is likely that desethylamodiaquine, not amodiaquine, is responsible for most of the observed antimalarial activity, and that the toxic effects of amodiaquine after oral administration may in part be due to desethylamodiaquine.

Showing 671 - 680 of 693 results