U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 111 - 120 of 1647 results

Flibanserin is the first drug to be approved for hypoactive sexual desire disorder (HSDD) in premenopausal women by the FDA in August 2015. It was originally developed as an antidepressant medication by Boehringer Ingelheim, but showed lack of efficacy in trials and was further developed as a hypoactive sexual disorder drug by Sprout Pharmaceuticals. Flibanserin's mechanism of action is attributed to its high affinity for 5-HTA1 and 5-HTA2 receptors, displaying agonist activity on 5-HTA1 and antagonist on 5-HTA2, resulting in lowering of serotonin in the brain as well as an effect on increasing norepinephrine and dopamine neurotransmitters. Flibansetrin has high affinity for serotonin receptors in the brain: it acts as an agonist on 5-HT1A and an antagonist on 5-HT2A. In vivo, flibanserin binds equally to 5-HT1A and 5-HT2A receptors. However, under higher levels of brain 5-HT (i.e., under stress), flibanserin may occupy 5-HT2A receptors in higher proportion than 5-HT(1A) receptors. It may also moderately antagonize D4 (dopamine) receptors and 5-HT2B and 5-HTB2C. Its action on neurotransmitter receptors may contribute to reduction in serotonin levels and increase in dopamine and norepinephrine levels, all of which may play part in reward processing. Flibanserin is sold under the trade name Addyi and indicated for the treatment of premenopausal women with acquired, generalized hypoactive sexual desire disorder (HSDD) as characterized by low sexual desire that causes marked distress or interpersonal difficulty.
Rolapitant (VARUBI) is neurokinin 1 (NK1) receptor antagonist. Rolapitant does not have significant affinity for the NK2 or NK3 receptors. Drug is indicated in combination with other antiemetic agents in adults for the prevention of delayed nausea and vomiting associated with initial and repeat courses of emetogenic cancer chemotherapy, including, but not limited to, highly emetogenic chemotherapy. Most common adverse reactions are: neutropenia and hiccups at Cisplatin Based Highly Emetogenic Chemotherapy; decreased appetite, neutropenia and dizziness at Moderately Emetogenic Chemotherapy and Combinations of Anthracycline and Cyclophosphamide. Inhibition of BCRP and P-gp by rolapitant can increase plasma concentrations of the concomitant drug and potential for adverse reactions. Strong CYP3A4 Inducers (e.g., rifampin) can significantly reduce plasma concentrations of rolapitant and decrease the efficacy of VARUBI.
Miltefosine is an anti-leishmanial agent. It is an alkyl phospholipids compound, was originally intended for breast cancer and other solid tumors. However, it could not be developed as an oral agent because of dose-limiting gastro-intestinal toxicity, and only a topical formulation is approved for skin metastasis. But Miltefosine showed excellent antileishmanial activity both in vitro and in experimental models. Miltefosine is effective in vitro against both promastigotes and amastigotes of various species of Leishmania and also other kinetoplastidae (Trypanosoma cruzi,T. brucei) and other protozoan parasites (Entamoeba histolytica, Acanthamoeba). Mechanism of action is unknown. It is likely to involve interaction with lipids (phospholipids and sterols), including membrane lipids, inhibition of cytochrome c oxidase (mitochondrial function), and apoptosis-like cell death. Miltefosine is approved for the treatment of Visceral leishmaniasis (due to Leishmania donovani), Cutaneous leishmaniasis (due to Leishmania braziliensis, Leishmania guyanensis, and Leishmania panamensis) and Mucosal leishmaniasis (due to Leishmania braziliensis).
Tedizolid (also known as TR-700, DA-7157) as is an active compound, which is produced by plasma or intestinal phosphatases, after administration of the drug, tedizolid phosphate either orally or intravenously. The mechanism of action of tedizolid occurs through inhibition of bacterial protein synthesis by binding to the 23S ribosomal RNA of the 50S subunit, thereby preventing the formation of the 70S initiation complex and inhibiting protein synthesis.

Class (Stereo):
CHEMICAL (ABSOLUTE)


Conditions:

Efinaconazole is triazole used as a 10% topical solution for the treatment of onychomycosis, a fungal infection of the nails. It was approved for use in Canada and the USA in 2014 and is marketed by Valeant Pharmaceuticals North America LLC under the name Jublia. Like other antifungal triazoles, efinaconazole inhibits the fungal cytochrome P450 enzyme lanosterol 14α demethylase (CYP51), thereby disrupting ergosterol synthesis and, consequently, membrane integrity and growth in fungi. CYP51 is evolutionarily conserved and, in mammals, mediates conversion of lanosterol to meiosis-activating sterols (MAS); MAS are intermediates in the biosynthesis of cholesterol and may have a signaling role in initiating meiosis and oocyte maturation. Azoles have higher affinity for fungal CYP51 compared to the mammalian enzyme and such selectivity contributes to the safety of this therapeutic class. Azoles have been reported to produce reproductive and developmental toxicity in both humans and laboratory animals. The mechanism is unknown but inhibition of mammalian CYP51 as well as other CYPs, e.g. CYP17, CYP19 and CYP26, have been postulated to play a role.
Fosnetupitant is a prodrug form of netupitant. Netupitant is a selective antagonist of human substance P/neurokinin 1 (NK-1) receptors. Upon intravenous administration, fosnetupitant is converted by phosphatases to its active form. It competitively binds to and blocks the activity of NK-1 receptors in the central nervous system, by inhibiting binding of substance P (SP) to NK-1 receptors. This prevents delayed emesis, which is associated with SP secretion. AKYNZEO® is a combination of palonosetron, a serotonin-3 receptor antagonist, and netupitant (capsules for oral use) or fosnetupitant (injections for intravenous use). AKYNZEO® for injection is indicated in combination with dexamethasone in adults for the prevention of acute and delayed nausea and vomiting associated with initial and repeat courses of highly emetogenic cancer chemotherapy.
Status:
First approved in 2014

Class (Stereo):
CHEMICAL (ACHIRAL)



Ceritinib is a selective inhibitor of ALK1, a target found in metastatic non-small cell lung cancer (NSCLC). Ceritinib is approved by FDA and is indicated for the treatment of anaplastic lymphoma kinase (ALK)-positive metastatic non-small cell lung cancer. Ceritinib also targets insulin-like growth factor 1 receptor (IGF-1R), insulin receptor (InsR), and ROS1.
Idelalisib is a first-in-class selective inhibitor of adenosine-5'-triphosphate (ATP) binding to PI3Kdelta kinase, resulting in inhibition of the P13K signalling pathway in malignant B cells. The compound is approved for the treatment of several types of blood cancer. Idelalisib is intended to be used in combination with rituximab as second or subsequent line therapy for the treatment of chronic lymphocytic leukaemia. The drug may cause fatal and/or severe diarrhea or colitis, hepatotoxicity, pneumonitis and intestinal perforation.
Ceftolozane is a novel a cephalosporin-class antibacterial drug. In combination with a beta-lactamase inhibitor tazobactam (ZERBAXA, ceftolozane/tazobactam ) ceftolozane, is currently indicated for the treatment of the adult patients with complicated intra-abdominal infections caused by designated Gram-negative and Gram-positive microorganisms and complicated urinary tract infections caused by certain Gram-negative bacteria, including those caused by multi-drug resistant Pseudomonas aeruginosa. To reduce the development of drug-resistant bacteria and maintain the effectiveness of ZERBAXA and other antibacterial drugs, ZERBAXA should be used only to treat infections that are proven or strongly suspected to be caused by susceptible bacteria. Safety and effectiveness in pediatric patients have not been established.
Avibactam (formerly NXL104, AVE1330A) is a synthetic non-β-lactam, covalent, slowly reversible β-lactamase inhibitor that inhibits the activities of Ambler class A and C β-lactamases and some Ambler class D enzymes. The combination of ceftazidime with avibactam exhibited broad-spectrum activity against Ambler class A- and class C-producing Enterobacteriaceae. AVYCAZ is a combination of ceftazidime, a cephalosporin, and avibactam indicated for the treatment of patients with the following infections caused by designated susceptible microorganisms: Complicated Intra-abdominal Infections, used in combination with metronidazole and Complicated Urinary Tract Infections, including Pyelonephritis.