Stereochemistry | ABSOLUTE |
Molecular Formula | C12H16BNO5S |
Molecular Weight | 297.135 |
Optical Activity | UNSPECIFIED |
Defined Stereocenters | 2 / 2 |
E/Z Centers | 0 |
Charge | 0 |
SHOW SMILES / InChI
SMILES
OB1O[C@H](CC(O)=O)CC[C@@H]1NC(=O)CC2=CC=CS2
InChI
InChIKey=IOOWNWLVCOUUEX-WPRPVWTQSA-N
InChI=1S/C12H16BNO5S/c15-11(7-9-2-1-5-20-9)14-10-4-3-8(6-12(16)17)19-13(10)18/h1-2,5,8,10,18H,3-4,6-7H2,(H,14,15)(H,16,17)/t8-,10-/m0/s1
Molecular Formula | C12H16BNO5S |
Molecular Weight | 297.135 |
Charge | 0 |
Count |
MOL RATIO
1 MOL RATIO (average) |
Stereochemistry | ABSOLUTE |
Additional Stereochemistry | No |
Defined Stereocenters | 2 / 2 |
E/Z Centers | 0 |
Optical Activity | UNSPECIFIED |
Vaborbactam (formerly RPX7009) is a new beta-lactamase inhibitor based on a cyclic boronic acid pharmacophore. Vaborbactam is a highly active beta-lactamase inhibitor that restores activity of meropenem and other beta-lactam antibiotics in beta-lactamase-producing bacteria, particularly KPC-producing CRE. Meropenem in combination with vaborbactam (VABOMERE) is indicated for the treatment of patients 18 years and older with
complicated urinary tract infections including pyelonephritis caused by designated susceptible bacteria. The vaborbactam component of VABOMERE is a non-suicidal beta-lactamase inhibitor that protects meropenem from degradation by certain serine beta-lactamases such as Klebsiella pneumoniae carbapenemase (KPC). Vaborbactam does not have any antibacterial activity. Vaborbactam does not decrease the activity of meropenem against meropenem-susceptible organisms.
Originator
Approval Year
Cmax
AUC
T1/2
Doses
AEs
Overview
CYP3A4 | CYP2C9 | CYP2D6 | hERG |
---|---|---|---|
OverviewOther
Other Inhibitor | Other Substrate | Other Inducer |
---|---|---|
Drug as perpetrator
Drug as victim
Tox targets
Sourcing
PubMed
Patents
Sample Use Guides
Administer VABOMERE 4 grams (meropenem 2 grams and vaborbactam 2 grams) every 8 hours by intravenous infusion over 3 hours for up to 14 days, in patients 18 years of age and older with an estimated glomerular filtration rate (eGFR) ≥50 mL/min/1.73m2
Dosage adjustment is recommended in patients with renal impairment who have an eGFR less than 50 mL/min/ 1.73m2
Route of Administration:
Intravenous
The activity of meropenem combined with the serine β-lactamase inhibitor vaborbactam (formerly RPX7009) was studied against 315 serine carbapenemase-producing Enterobacteriaceae (CPE) isolates by use of checkerboard-designed panels to assess the optimal inhibitor concentration (range tested, 0.5 to 32 μg/ml). Overall, meropenem alone (MIC50 and MIC90, 16 and >64 μg/ml, respectively) inhibited only 2.2% of the isolates at ≤1 μg/ml (the CLSI susceptibility breakpoint) and 7.3% of the isolates at ≤2 μg/ml (the EUCAST breakpoint). Vaborbactam restored meropenem activity for 72.7 to 98.1% of CPE isolates at ≤2 μg/ml, and maximum potentiation was achieved with fixed concentrations of ≥8 μg/ml of the inhibitor (≥96.5% of isolates were inhibited at ≤2 μg/ml of meropenem-vaborbactam). Meropenem-vaborbactam with a fixed concentration of 8 μg/ml of the inhibitor (MIC50, ≤0.06 μg/ml for all organisms) inhibited 93.7% of the CPE isolates displaying elevated meropenem MICs at ≤1 μg/ml. Meropenem-vaborbactam MICs were elevated for isolates producing metallo-β-lactamases (MIC, 16 to >64 μg/ml) or displaying decreased expression of OmpK37 and/or elevated expression of the AcrAB-TolC efflux system (MIC, 16 μg/ml). Vaborbactam showed no antibacterial activity alone (all MICs, >64 μg/ml).