{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
US Approved OTC
Source:
21 CFR 333.210(g) antifungal clotrimazole
Source URL:
First approved in 1975
Source:
LOTRIMIN by SCHERING PLOUGH
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Clotrimazole is an anti-fungal medicine indicated for the treatment of vaginal yeast infections and tinea. It can be used either in combination with other drugs (betamethasone dipropionate) or alone, in form of topical or vaginal cream. The drug exerts its action by inhibiting lanosterol demethylase thereby affecting the growth of fungi.
Status:
US Approved OTC
Source:
21 CFR 333.210(c) antifungal miconazole nitrate
Source URL:
First approved in 1974
Source:
MONISTAT-DERM by INSIGHT PHARMS
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Miconazole is a synthetic imidazole derivative, a topical antifungal agent for use in the local treatment of vaginal, and skin and nail infections due to yeasts and dermatophytes. It is particularly active against Candida spp., Trichophyton spp., Epidermophyton spp., Microsporum spp. and Pityrosporon orbiculare (Malassezia furfur), but also possesses some activity against Gram-positive bacteria. It binds to the heme moiety of the fungal cytochrome P-450 dependent enzyme lanosterol 14-alpha-demethlyase. Inhibits 14-alpha-demethlyase, blocks formation of ergosterol and leads to the buildup of toxic methylated 14-a-sterols. Miconazole also affects the synthesis of triglycerides and fatty acids and inhibits oxidative and peroxidative enzymes, increasing the amount of active oxygen species within the cell.
Status:
US Approved OTC
Source:
21 CFR 341.20(b)(7) cough/cold:nasal decongestant oxymetazoline hydrochloride
Source URL:
First approved in 1964
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Oxymetazoline is an adrenergic alpha-agonist, direct acting sympathomimetic, used as a vasoconstrictor to relieve nasal congestion The sympathomimetic action of oxymetazoline constricts the smaller arterioles of the nasal passages, producing a prolonged (up to 12 hours), gentle and decongesting effect. Oxymetazoline elicits relief of conjunctival hyperemia by causing vasoconstriction of superficial conjunctival blood vessels. The drug's action has been demonstrated in acute allergic conjunctivitis and in chemical (chloride) conjunctivitis. Oxymetazoline is self-medication for temporary relief of nasal congestion associated with the common cold, hay fever, or other upper respiratory allergies. Oxymetazoline is available over-the-counter as a topical decongestant in the form of oxymetazoline hydrochloride in nasal sprays such as Afrin, Operil, Dristan, Dimetapp, oxyspray, Facimin, Nasivin, Nostrilla, Sudafed OM, Vicks Sinex, Zicam, SinuFrin, and Mucinex Full Force. Due to its vasoconstricting properties, oxymetazoline is also used to treat nose bleeds and eye redness.
Status:
US Approved OTC
Source:
21 CFR 358.710(a)(2) dandruff:dandruff (wash-off) pyrithione zinc
Source URL:
First approved in 1961
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Pyrithione zinc is an antibacterial and antifungal agent developed by scientists in the 1930's. Since then it has been used to treat seborrheic dermatitis of the scalp and other skin conditions such as eczema, athlete's foot, and vitiligo, as well as psoriasis. Because of its antifungal properties, it is commonly found in dandruff shampoo. Products containing pyrithione zinc are available today with and without prescription, and it is the main ingredient in many over-the-counter creams, lotions, soaps, and shampoos. It also has antibacterial properties and is effective against many pathogens from the Streptococcus and Staphylococcus genera. Pyrithione zinc`s other medical applications include treatments of psoriasis, eczema, ringworm, fungus, athletes foot, dry skin, atopic dermatitis, tinea, and vitiligo. Its antifungal effect is thought to derive from its ability to disrupt membrane transport by blocking the proton pump that energizes the transport mechanism.
Status:
US Approved OTC
Source:
21 CFR 341.12(e) cough/cold:antihistamine dexchlorpheniramine maleate
Source URL:
First approved in 1958
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Dexchlorpheniramine, the d-isomer of the racemic compound chlorpheniramine, is two times more active than chlorpheniramine. Dexchlorpheniramine does not prevent the release of histamine, but rather, competes with free histamine for binding at the H1-receptor sites, and competitively antagonizes the effects of histamine on H1-receptors in the GI tract, uterus, large blood vessels, and bronchial muscle. Blockade of H1-receptors also suppresses the formation of oedema, flare, and pruritus that result from histaminic activity. Since dexchlorpheniramine binds to central and peripheral H1-receptors, sedative effects are likely to occur. H1-antagonists are structurally similar to anticholinergic agents and therefore possess the potential to exhibit anticholinergic properties of varying degrees. They also have antipruritic effects. Dexchlorpheniramine has high antihistaminic activity, moderate anticholinergic effects and minimal sedative effects. The drug does not possess antiemetic properties.
Status:
US Approved OTC
Source:
21 CFR 341.12(a) cough/cold:antihistamine brompheniramine maleate
Source URL:
First approved in 1956
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Brompheniramine is an antihistaminergic medication of the propylamine class. It is a first-generation antihistamine, which is used for the treatment of the symptoms of the common cold and allergic rhinitis, such as runny nose, itchy eyes, watery eyes, and sneezing. In allergic reactions, an allergen interacts with and cross-links surface IgE antibodies on mast cells and basophils. Once the mast cell-antibody-antigen complex is formed, a complex series of events occurs that eventually leads to cell-degranulation and the release of histamine (and other chemical mediators) from the mast cell or basophil. Once released, histamine can react with local or widespread tissues through histamine receptors. Brompheniramine is a histamine H1 antagonist of the alkylamine class. It provides effective, temporary relief of sneezing, watery and itchy eyes, and runny nose due to hay fever and other upper respiratory allergies. Brompheniramine is metabolised by cytochrome P450s. The halogenated alkylamine antihistamines all exhibit optic isomerism and brompheniramine products contain racemic brompheniramine maleate whereas dexbrompheniramine (Drixoral) is the dextrorotary (right-handed) stereoisomer.
Status:
US Approved OTC
Source:
21 CFR 341.14(a)(3) cough/cold:antitussive dextromethorphan
Source URL:
First approved in 1954
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Dextromethorphan is a non-narcotic morphine derivative widely used as an antitussive for almost 40 years. It has attracted attention due to its anticonvulsant and neuroprotective properties. It is a cough suppressant in many over-the-counter cold and cough medicines. In 2010, the FDA approved the combination product dextromethorphan/quinidine for the treatment of pseudobulbar affect. Dextromethorphan suppresses the cough reflex by a direct action on the cough center in the medulla of the brain. Dextromethorphan shows high-affinity binding to several regions of the brain, including the medullary cough center. This compound is an NMDA receptor antagonist and acts as a non-competitive channel blocker. It is one of the widely used antitussives and is used to study the involvement of glutamate receptors in neurotoxicity. Dextromethorphan (DM) is a sigma-1 receptor agonist and an uncompetitive NMDA receptor antagonist. The mechanism by which dextromethorphan exerts therapeutic effects in patients with pseudobulbar affect is unknown. Dextromethorphan should not be taken with monoamine oxidase inhibitors due to the potential for serotonin syndrome. Dextromethorphan is extensively metabolized by CYP2D6 to dextrorphan, which is rapidly glucuronidated and unable to cross the blood-brain barrier.
Status:
US Approved OTC
Source:
21 CFR 341.12(c) cough/cold:antihistamine chlorpheniramine maleate
Source URL:
First approved in 1949
Source:
CHLOR-TRIMETON by SCHERING
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Conditions:
Chlorpheniramine is an antihistamine. Chlorpheniramine binds to the histamine H1 receptor. This blocks the action of endogenous histamine, which subsequently leads to temporary relief of the negative symptoms brought on by histamine. Chlorpheniramine is used for relieving symptoms of sinus congestion, sinus pressure, runny nose, watery eyes, itching of the nose and throat, and sneezing due to upper respiratory infections (eg, colds), allergies, and hay fever. In addition to being a histamine H1 receptor (HRH1) antagonist, chlorphenamine has been shown to work as a serotonin-norepinephrine reuptake inhibitor or SNRI.
Status:
US Approved OTC
Source:
21 CFR 341.12(k) cough/cold:antihistamine pyrilamine maleate
Source URL:
First approved in 1948
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Pyrilamine (also known as Mepyramine) is a first generation antihistamine, targeting the H1 receptor. However, it rapidly permeates the brain and so often causes drowsiness as a side effect. It is used in over-the-counter combination products for colds and menstrual symptoms. Mepyramine is a histamine H1 receptor inverse agonist. It binds to a G protein-coupled form of the receptor and promotes a G protein-coupled inactive state of the H1 receptor that interferes with the Gq/11-mediated signaling. Mepyramine competes with histamine for binding at H1-receptor sites on the effector cell surface, resulting in suppression of histaminic edema, flare, and pruritus. The sedative properties of Mepyramine occur at the subcortical level of the CNS. It has mild hypnotic properties and some local anesthetic action and is used for allergies (including skin eruptions) both parenterally and locally. It is a common ingredient of cold remedies.
Status:
US Approved OTC
Source:
21 CFR 348.10(a)(2) external analgesic:male genital desensitizer lidocaine
Source URL:
First approved in 1948
Source:
NDA006488
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Lidocaine is a local anesthetic and cardiac depressant used to numb tissue in a specific area and for management of cardiac arrhythmias, particularly those of ventricular origins, such as occur with acute myocardial infarction. Lidocaine alters signal conduction in neurons by blocking the fast voltage-gated Na+ channels in the neuronal cell membrane responsible for signal propagation. With sufficient blockage, the membrane of the postsynaptic neuron will not depolarize and will thus fail to transmit an action potential. This creates the anesthetic effect by not merely preventing pain signals from propagating to the brain, but by stopping them before they begin. Careful titration allows for a high degree of selectivity in the blockage of sensory neurons, whereas higher concentrations also affect other modalities of neuron signaling. Lidocaine exerts an antiarrhythmic effect by increasing the electrical stimulation threshold of the ventricle during diastole. In usual therapeutic doses, lidocaine hydrochloride produces no change in myocardial contractility, in systemic arterial pressure, or an absolute refractory period. The efficacy profile of lidocaine as a local anesthetic is characterized by a rapid onset of action and intermediate duration of efficacy. Therefore, lidocaine is suitable for infiltration, block, and surface anesthesia. Longer-acting substances such as bupivacaine are sometimes given preference for spinal and epidural anesthesias; lidocaine, though, has the advantage of a rapid onset of action. Lidocaine is also the most important class-1b antiarrhythmic drug; it is used intravenously for the treatment of ventricular arrhythmias (for acute myocardial infarction, digoxin poisoning, cardioversion, or cardiac catheterization) if amiodarone is not available or contraindicated. Lidocaine should be given for this indication after defibrillation, CPR, and vasopressors have been initiated. A routine preventative dose is no longer recommended after a myocardial infarction as the overall benefit is not convincing. Inhaled lidocaine can be used as a cough suppressor acting peripherally to reduce the cough reflex. This application can be implemented as a safety and comfort measure for patients who have to be intubated, as it reduces the incidence of coughing and any tracheal damage it might cause when emerging from anesthesia. Adverse drug reactions (ADRs) are rare when lidocaine is used as a local anesthetic and is administered correctly. Most ADRs associated with lidocaine for anesthesia relate to administration technique (resulting in systemic exposure) or pharmacological effects of anesthesia, and allergic reactions only rarely occur. Systemic exposure to excessive quantities of lidocaine mainly result in a central nervous system (CNS) and cardiovascular effects – CNS effects usually occur at lower blood plasma concentrations and additional cardiovascular effects present at higher concentrations, though cardiovascular collapse may also occur with low concentrations.