U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 411 - 420 of 132111 results

Vorinostat (rINN) or suberoylanilide hydroxamic acid (SAHA), is a drug currently under investigation for the treatment of cutaneous T cell lymphoma (CTCL). Vorinostat inhibits the enzymatic activity of histone deacetylases HDAC1, HDAC2 and HDAC3 (Class I) and HDAC6 (Class II) at nanomolar concentrations (IC50< 86 nM). These enzymes catalyze the removal of acetyl groups from the lysine residues of histones proteins. In some cancer cells, there is an overexpression of HDACs, or an aberrant recruitment of HDACs to oncogenic transcription factors causing hypoacetylation of core nucleosomal histones. By inhibiting histone deacetylase, vorinostat causes the accumulation of acetylated histones and induces cell cycle arrest and/or apoptosis of some transformed cells. The mechanism of the antineoplastic effect of vorinostat has not been fully characterized. Vorinostat is used for the treatment of cutaneous manifestations in patients with cutaneous T-cell lymphoma who have progressive, persistent or recurrent disease on or following two systemic therapies. Vorinostat is marketed under the name Zolinza by Merck for the treatment of cutaneous manifestations in patients with cutaneous T cell lymphoma (CTCL) when the disease persists, gets worse, or comes back during or after two systemic therapies.
Also called Ecamsule (technical name terephthalylidine dicamphor sulfonic acid), Mexoryl SX is a synthetic sunscreen agent developed and patented by L’Oreal and used in the company’s sunscreen products sold outside the United States since 1993 (approved for use in Europe in 1991). Ecamsule affords broad spectrum protection against the sun’s UVB and UVA rays. Exposed to UV, ecamsule undergoes reversible photoisomerization, followed by photoexcitation. The absorbed UV is then released as thermal energy, without penetrating the skin. The UVB range is 280 to 320 nanometers, and the UVA range is 320 to 400. Ecamsule protects against UV wavelengths in the 290–400 nanometer range, with peak protection at 345 nm.[3][4] Since ecamsule doesn't cover the entire UV spectrum, it should be combined with other active sunscreen agents to ensure broad-spectrum UV protection. Ecamsule is a photostable organic UVA absorber, meaning it doesn't degrade significantly when exposed to light.
Status:
First approved in 2006

Class (Stereo):
CHEMICAL (RACEMIC)


Conditions:

Ranolazine is a metabolic modulator developed by Syntex (Roche) and sold under the trade name Ranexa by Gilead Sciences. Ranexa has antianginal and anti-ischemic effects that do not depend upon reductions in heart rate or blood pressure. The mechanism of action of ranolazine is unknown. It does not increase the rate-pressure product, a measure of myocardial work, at maximal exercise. In vitro studies suggest that ranolazine is a P-gp inhibitor. Ranolazine is believed to have its effects via altering the trans-cellular late sodium current. It is by altering the intracellular sodium level that ranolazine affects the sodium-dependent calcium channels during myocardial ischemia. Thus, ranolazine indirectly prevents the calcium overload that causes cardiac ischemia. Because Ranexa prolongs the QT interval, it should be reserved for patients who have not achieved an adequate response with other antianginal drugs. Ranexa should be used in combination with amlodipine, beta-blockers or nitrates. The effect on angina rate or exercise tolerance appeared to be smaller in women than men.
Darunavir (trade name Prezista) is an orally active bis-furan-sulfonamide inhibitor of human immunodeficiency virus (HIV-1) protease. Darunavir was developed by Tibotec Pharmaceuticals (now Janssen R&D Ireland). Darunavir is indicated for the treatment of HIV-1 infection in adult and pediatric patients 3 years of age and older. The drug is co-administered with low-dose ritonavir and other anti-HIV agents. It is the only antiretroviral that has been registered at two different doses, 800/100 mg once-daily or 600/100 mg twice-daily, allowing its administration throughout the entire course of HIV disease, from naive subjects without any HIV-1 resistance to heavily treatment-experienced subjects with widespread triple-class family resistance.
Ciclesonide is a glucocorticoid receptor agonist indicated for the treatment of allergic rhinitis (Omnaris nasal spray) and asthma (Alvesco). It was also developed by Byk Gulden for chronic obstructive pulmonary disease (COPD), but no development had been reported for this indication since 1999. Ciclesonide is a pro-drug and rapidly metabolized to C21-desisobutyryl-ciclesonide which is more potent toward GR receptor than the parent drug.

Class (Stereo):
CHEMICAL (ABSOLUTE)



Rasagiline (N-propargyl-1-(R)-aminoindan) is a selective, irreversible monoamine oxidase B (MAO B) inhibitor, which has been developed as an anti-Parkinson drug and was sold as a mesylate salt under brand name AZILECT. AZILECT is indicated for the treatment of the signs and symptoms of idiopathic Parkinson’s disease (PD) as initial monotherapy and as adjunct therapy to levodopa. The effectiveness of AZILECT was demonstrated in patients with early Parkinson’s disease who were receiving AZILECT as monotherapy and who were not receiving any concomitant dopaminergic therapy. The effectiveness of AZILECT as adjunct therapy was demonstrated in patients with Parkinson’s disease who were treated with levodopa. PD is a progressive neurodegenerative, dopamine deficiency disorder. The main therapeutic strategies for PD treatment relies on dopamine precursors (levodopa), inhibition of dopamine metabolism (monoamine oxidase [MAO] B and catechol-O-methyl transferase inhibitors), and dopamine receptor agonists. In contrast to selegiline, rasagiline is not metabolized to potentially toxic amphetamine metabolites. The precise mechanisms of action of rasagiline is unknown. One mechanism is believed to be related to its MAO-B inhibitory activity, which causes an increase in extracellular levels of dopamine in the striatum.
Sunitinib (marketed as Sutent by Pfizer, and previously known as SU11248) is an oral, small-molecule, multi-targeted receptor tyrosine kinase inhibitor that was approved by the FDA for the treatment of renal cell carcinoma (RCC) and imatinib-resistant gastrointestinal stromal tumor. Sunitinib was evaluated for its inhibitory activity against a variety of kinases and was identified as an inhibitor of platelet-derived growth factor receptors (PDGFRa and PDGFRb), vascular endothelial growth factor receptors (VEGFR1, VEGFR2, and VEGFR3), stem cell factor receptor (KIT), Fms-like tyrosine kinase-3 (FLT3), colony-stimulating factor receptor Type 1 (CSF-1R), and the glial cell-line derived neurotrophic factor receptor (RET). Sunitinib adverse events are considered somewhat manageable and the incidence of serious adverse events low. The most common adverse events associated with sunitinib therapy are fatigue, diarrhea, nausea, anorexia, hypertension, yellow skin discoloration, hand-foot skin reaction, and stomatitis. In the placebo-controlled Phase III GIST study, adverse events which occurred more often with sunitinib than placebo included diarrhea, anorexia, skin discoloration, mucositis/stomatitis, asthenia, altered taste, and constipation. Dose reductions were required in 50% of the patients studied in RCC in order to manage the significant toxicities of this agent.
Dasatinib [BMS 354825] is an orally active, small molecule, dual inhibitor of both SRC and ABL kinases that is under development with Bristol-Myers Squibb for the treatment of patients with chronic myelogenous leukaemia (CML) and imatinib-acquired resistance/intolerance. It’s used for the treatment of adults with chronic, accelerated, or myeloid or lymphoid blast phase chronic myeloid leukemia with resistance or intolerance to prior therapy. Also indicated for the treatment of adults with Philadelphia chromosome-positive acute lymphoblastic leukemia with resistance or intolerance to prior therapy. While imatinib remains a frontline therapy for CML, patients with advanced disease frequently develop resistance to imatinib therapy through multiple mechanisms. Dasatinib is also undergoing preclinical evaluation for its potential as a therapy against multiple myeloma. Bristol-Myers Squibb has a composition-of-matter patent covering this research approach that will expire in 2020. Dasatinib, at nanomolar concentrations, inhibits the following kinases: BCR-ABL, SRC family (SRC, LCK, YES, FYN), c-KIT, EPHA2, and PDGFRβ. Based on modeling studies, dasatinib is predicted to bind to multiple conformations of the ABL kinase.

Class (Stereo):
CHEMICAL (ABSOLUTE)



Anidulafungin (brand names Eraxis (in U.S. and Russia) and Ecalta (in Europe)) is a semi-synthetic echinocandin with antifungal activity and it is active in vitro against many Candida, as well as some Aspergillus. Like other echinocandins, anidulafungin is not active against Cryptococcus neoformans, Trichosporon, Fusarium, or zygomycetes. This drug is indicated for the treatment of candidemia and the following Candida infections: intra-abdominal abscess and peritonitis; and for the treatment of esophageal candidiasis. Anidulafungin inhibits glucan synthase, an enzyme present in fungal, but not mammalian cells. This results in inhibition of the formation of 1,3--D-glucan, an essential component of the fungal cell wall.
Paliperidone (9-OH-risperidone) is the primary active metabolite of the older antipsychotic risperidone. While its specific mechanism of action is unknown, it is believed that paliperidone and risperidone act via similar if not the same pathways. It has been proposed that the drug's therapeutic activity in schizophrenia is mediated through a combination of central dopamine Type 2 (D2) and serotonin Type 2 (5HT2A) receptor antagonism. Paliperidone is also active as an antagonist at alpha 1 and alpha 2 adrenergic receptors and H1 histaminergic receptors, which may explain some of the other effects of the drug. Paliperidone was approved by the FDA for treatment of schizophrenia on December 20, 2006. Very common adverse effects are: headache, tachycardia, somnolence and insomnia.