{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
US Approved Rx
(2021)
Source:
ANDA212630
(2021)
Source URL:
First approved in 1954
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Chlorpromazine is a psychotropic agent indicated for the treatment of schizophrenia. It also exerts sedative and antiemetic activity. Chlorpromazine has actions at all levels of the central nervous system-primarily at subcortical levels-as well as on multiple organ systems. Chlorpromazine has strong antiadrenergic and weaker peripheral anticholinergic activity; ganglionic blocking action is relatively slight. It also possesses slight antihistaminic and antiserotonin activity. Chlorpromazine acts as an antagonist (blocking agent) on different postsysnaptic receptors -on dopaminergic-receptors (subtypes D1, D2, D3 and D4 - different antipsychotic properties on productive and unproductive symptoms), on serotonergic-receptors (5-HT1 and 5-HT2, with anxiolytic, antidepressive and antiaggressive properties as well as an attenuation of extrapypramidal side-effects, but also leading to weight gain, fall in blood pressure, sedation and ejaculation difficulties), on histaminergic-receptors (H1-receptors, sedation, antiemesis, vertigo, fall in blood pressure and weight gain), alpha1/alpha2-receptors (antisympathomimetic properties, lowering of blood pressure, reflex tachycardia, vertigo, sedation, hypersalivation and incontinence as well as sexual dysfunction, but may also attenuate pseudoparkinsonism - controversial) and finally on muscarinic (cholinergic) M1/M2-receptors (causing anticholinergic symptoms like dry mouth, blurred vision, obstipation, difficulty/inability to urinate, sinus tachycardia, ECG-changes and loss of memory, but the anticholinergic action may attenuate extrapyramidal side-effects). Additionally, Chlorpromazine is a weak presynaptic inhibitor of Dopamine reuptake, which may lead to (mild) antidepressive and antiparkinsonian effects. Chlorpromazine has being marketed under the trade names Thorazine and Largactil among others. Chlorpromazine is used for treating certain mental or mood disorders (eg, schizophrenia), the manic phase of manic-depressive disorder, anxiety and restlessness before surgery, the blood disease porphyria, severe behavioral and conduct disorders in children, nausea and vomiting, and severe hiccups.
Status:
US Approved Rx
(2018)
Source:
ANDA207264
(2018)
Source URL:
First approved in 1946
Source:
D.H.E. 45 by BAUSCH
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Dihydroergotamine (DHE) is a semisynthetic, hydrogenated ergot alkaloid,
synthesized by reducing an unsaturated bond in ergotamine. Dihydroergotamine was originally envisaged as an antihypertensive agent, but it was later shown to be highly effective in treating migraine.
Dihydroergotamine was first used to treat migraine in 1945 by Horton, Peters, and Blumenthal at the Mayo Clinic. In 1986, Raskin and Callaham reconfirmed
the effectiveness of DHE for both intermittent and intractable migraine. The use of DHE was reviewed by Scott in 1992. In 1997, a nasal spray
version was approved for use in migraine. Dihydroergotamine is indicated for the acute treatment of migraine headaches with or without aura and the acute treatment of cluster headache episodes. Dihydroergotamine binds with high affinity to 5-HT1Dα and 5-HT1Dβ receptors. It also binds with high
affinity to serotonin 5-HT1A, 5-HT2A, and 5-HT2C receptors, noradrenaline α2A, α2B and α, receptors, and dopamine D2L and D3 receptors.
The therapeutic activity of dihydroergotamine in migraine is generally attributed to the agonist effect at 5-HT1D receptors. Two current theories have been proposed to explain the efficacy of 5-HT1D receptor agonists in migraine. One theory suggests that activation of 5-HT1D receptors located on
intracranial blood vessels, including those on arterio-venous anastomoses, leads to vasoconstriction, which correlates with the relief of migraine headache. The alternative hypothesis suggests that activation of
5-HT1D receptors on sensory nerve endings of the trigeminal system results in the inhibition of proinflammatory neuropeptide release.
Status:
US Approved Rx
(2019)
Source:
ANDA211455
(2019)
Source URL:
First approved in 1946
Source:
METHERGINE by EDISON THERAPS LLC
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Methylergometrine (other names include methylergonovine, methylergobasin, methergine, and D-lysergic acid 1-butanolamide) is a synthetic analogue of ergonovine, a psychedelic alkaloid found in ergot, and many species of morning glory. In general, the effects of all the ergot alkaloids appear to results from their actions as partial agonists or antagonists at adrenergic, dopaminergic, and tryptaminergic receptors. The spectrum of effects depends on the agent, dosage, species, tissue, and experimental or physiological conditions. All of the alkaloids of ergot significantly increase the motor activity of the uterus. After small doses contractions are increased in force or frequency, or both, but are followed by a normal degree of relaxation. As the dose is increased, contractions become more forceful and prolonged, resting tonus is markedly increased, and sustained contracture can result. Methylergometrine acts directly on the smooth muscle of the uterus and increases the tone, rate, and amplitude of rhythmic contractions through binding and the resultant antagonism of the dopamine D1 receptor. Thus, it induces a rapid and sustained tetanic uterotonic effect which shortens the third stage of labor and reduces blood loss. Methylergometrine is used for the prevention and control of excessive bleeding following vaginal childbirth.
Status:
US Approved Rx
(2019)
Source:
ANDA211455
(2019)
Source URL:
First approved in 1946
Source:
METHERGINE by EDISON THERAPS LLC
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Methylergometrine (other names include methylergonovine, methylergobasin, methergine, and D-lysergic acid 1-butanolamide) is a synthetic analogue of ergonovine, a psychedelic alkaloid found in ergot, and many species of morning glory. In general, the effects of all the ergot alkaloids appear to results from their actions as partial agonists or antagonists at adrenergic, dopaminergic, and tryptaminergic receptors. The spectrum of effects depends on the agent, dosage, species, tissue, and experimental or physiological conditions. All of the alkaloids of ergot significantly increase the motor activity of the uterus. After small doses contractions are increased in force or frequency, or both, but are followed by a normal degree of relaxation. As the dose is increased, contractions become more forceful and prolonged, resting tonus is markedly increased, and sustained contracture can result. Methylergometrine acts directly on the smooth muscle of the uterus and increases the tone, rate, and amplitude of rhythmic contractions through binding and the resultant antagonism of the dopamine D1 receptor. Thus, it induces a rapid and sustained tetanic uterotonic effect which shortens the third stage of labor and reduces blood loss. Methylergometrine is used for the prevention and control of excessive bleeding following vaginal childbirth.
Status:
US Approved Rx
(2018)
Source:
ANDA207264
(2018)
Source URL:
First approved in 1946
Source:
D.H.E. 45 by BAUSCH
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Dihydroergotamine (DHE) is a semisynthetic, hydrogenated ergot alkaloid,
synthesized by reducing an unsaturated bond in ergotamine. Dihydroergotamine was originally envisaged as an antihypertensive agent, but it was later shown to be highly effective in treating migraine.
Dihydroergotamine was first used to treat migraine in 1945 by Horton, Peters, and Blumenthal at the Mayo Clinic. In 1986, Raskin and Callaham reconfirmed
the effectiveness of DHE for both intermittent and intractable migraine. The use of DHE was reviewed by Scott in 1992. In 1997, a nasal spray
version was approved for use in migraine. Dihydroergotamine is indicated for the acute treatment of migraine headaches with or without aura and the acute treatment of cluster headache episodes. Dihydroergotamine binds with high affinity to 5-HT1Dα and 5-HT1Dβ receptors. It also binds with high
affinity to serotonin 5-HT1A, 5-HT2A, and 5-HT2C receptors, noradrenaline α2A, α2B and α, receptors, and dopamine D2L and D3 receptors.
The therapeutic activity of dihydroergotamine in migraine is generally attributed to the agonist effect at 5-HT1D receptors. Two current theories have been proposed to explain the efficacy of 5-HT1D receptor agonists in migraine. One theory suggests that activation of 5-HT1D receptors located on
intracranial blood vessels, including those on arterio-venous anastomoses, leads to vasoconstriction, which correlates with the relief of migraine headache. The alternative hypothesis suggests that activation of
5-HT1D receptors on sensory nerve endings of the trigeminal system results in the inhibition of proinflammatory neuropeptide release.
Status:
US Approved OTC
Source:
21 CFR 358.310 ingrown toenail sodium sulfide (aqueous)
Source URL:
First approved in 2003
Source:
21 CFR 358D
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
A sulfide ion is composed of a lone sulfur atom. Its charge is negative two, giving sulfides this formula: S^2-. Sulfide is a strong base, so solutions of sulfide in water are basic, due to hydrolysis. One well-known ionic compound with a sulfide ion is H_2S. The infamous rotten-egg smell often associated with sulfur originates from this compound. Sodium sulfide nonahydrate is used in the formation of surface functionalized cadmium sulfide quantum dots.
Status:
US Approved OTC
Source:
21 CFR 358.310 ingrown toenail sodium sulfide (aqueous)
Source URL:
First approved in 2003
Source:
21 CFR 358D
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
A sulfide ion is composed of a lone sulfur atom. Its charge is negative two, giving sulfides this formula: S^2-. Sulfide is a strong base, so solutions of sulfide in water are basic, due to hydrolysis. One well-known ionic compound with a sulfide ion is H_2S. The infamous rotten-egg smell often associated with sulfur originates from this compound. Sodium sulfide nonahydrate is used in the formation of surface functionalized cadmium sulfide quantum dots.
Status:
US Approved OTC
Source:
21 CFR 358.310 ingrown toenail sodium sulfide (aqueous)
Source URL:
First approved in 2003
Source:
21 CFR 358D
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
A sulfide ion is composed of a lone sulfur atom. Its charge is negative two, giving sulfides this formula: S^2-. Sulfide is a strong base, so solutions of sulfide in water are basic, due to hydrolysis. One well-known ionic compound with a sulfide ion is H_2S. The infamous rotten-egg smell often associated with sulfur originates from this compound. Sodium sulfide nonahydrate is used in the formation of surface functionalized cadmium sulfide quantum dots.
Status:
US Approved OTC
Source:
21 CFR 358.310 ingrown toenail sodium sulfide (aqueous)
Source URL:
First approved in 2003
Source:
21 CFR 358D
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
A sulfide ion is composed of a lone sulfur atom. Its charge is negative two, giving sulfides this formula: S^2-. Sulfide is a strong base, so solutions of sulfide in water are basic, due to hydrolysis. One well-known ionic compound with a sulfide ion is H_2S. The infamous rotten-egg smell often associated with sulfur originates from this compound. Sodium sulfide nonahydrate is used in the formation of surface functionalized cadmium sulfide quantum dots.
Class (Stereo):
CHEMICAL (ABSOLUTE)
Mesulergine, an antagonist of 5-HT2C, and dopamine receptors was studied in clinical trials for the treatment of Parkinson's disease. However, further, development was discontinued due to toxicological observations in animal experiments.