U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 31 - 40 of 44 results

Chelerythrine is a kind of benzo[c] phenanthridine alkaloids, which is widely found in plant of Fumariaceae, Papaveraceae, Ranunculaceae and Rutaceae families. Chelerythrine is a potent and specific inhibitor of protein kinase C. In addition chelerythrine inhibits pro-survival protein Bcl(XL) thereby inducing apoptosis. It exerts antitumor properties.
Chelerythrine is a kind of benzo[c] phenanthridine alkaloids, which is widely found in plant of Fumariaceae, Papaveraceae, Ranunculaceae and Rutaceae families. Chelerythrine is a potent and specific inhibitor of protein kinase C. In addition chelerythrine inhibits pro-survival protein Bcl(XL) thereby inducing apoptosis. It exerts antitumor properties.
Chelerythrine is a kind of benzo[c] phenanthridine alkaloids, which is widely found in plant of Fumariaceae, Papaveraceae, Ranunculaceae and Rutaceae families. Chelerythrine is a potent and specific inhibitor of protein kinase C. In addition chelerythrine inhibits pro-survival protein Bcl(XL) thereby inducing apoptosis. It exerts antitumor properties.
Sphingosine harbors two chiral centers and therefore exhibits four stereoisomers, only one of which, the D-erythro (2S,3R) is known to exist naturally. ERYTHRO-SPHINGOSINE, (±)- is a mixture of two isomers: inactive ERYTHRO-SPHINGOSINE, (+)- and the active ERYTHRO-SPHINGOSINE, (-), also known as D-erythro (2S,3R)-SPHINGOSINE or D-erythro –SPHINGOSINE. It was found, that D-erythro –SPHINGOSINE acts as a potent inhibitor of protein kinase C and of transient receptor potential melastatin 7 (TRPM7). Besides, was shown, that sphingosine may be efficacious against alveolar rhabdomyosarcoma, irrespective of TP53 mutation status. It also could evolve as alternative treatment options for aggressive lymphomas via PKC inhibition, apoptosis, and autophagy.
Staurosporine is an alkaloid isolated from the culture broth of Streptomyces staurosporesa. It exerts antimicrobial, hypotensive, and cytotoxic activity. The main biological activity of staurosporine is the inhibition of protein kinases through the prevention of ATP binding to the kinase. This is achieved through the stronger affinity of staurosporine to the ATP-binding site on the kinase. Staurosporine is a prototypical ATP-competitive kinase inhibitor in that it binds to many kinases with high affinity, though with little selectivity. It is a potent, cell permeable protein kinase C inhibitor with an IC50 of 0.7 nM. At higher concentration (1-20 nM), staurosporine also inhibits other kinases such as PKA, PKG, CAMKII and Myosin light chain kinase (MLCK). At 50-100 nM, it is a functional neurotrophin agonist, promoting neurite outgrowth in neuroblastoma, pheochromocytoma and brain primary neuronal cultures. At 0.2- 1 uM, staurosporine induces cell apoptosis. Staurosporine is also a potent GSK-3β inhibitor with a reported IC50 value of 15 nM. In research, staurosporine is used to induce apoptosis. It has been found that one way in which staurosporine induces apoptosis is by activating caspase-3. Staurosporine was discovered to have biological activities ranging from anti-fungal to anti-hypertensive. The interest in these activities resulted in a large investigative effort in chemistry and biology and the discovery of the potential for anti-cancer treatment. Staurosporine induces apoptosis by multiple pathways and that the inhibition of more than one kinase is responsible for its potent activity. Because the mechanism of action of staurosporine is distinct from traditional anticancer drugs, this may warrant further preclinical evaluations of the antitumor potential of new staurosporine derivatives either alone or in combination with death ligands or conventional chemotherapeutic drugs.

Showing 31 - 40 of 44 results