U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}
Millennium Pharmaceuticals Inc's tandutinib (MLN-518), a piperazinyl derivative of quinazoline, is an orally active inhibitor of FLT3 kinase and family members PDGFR beta and c-Kit. Tandutinib inhibited FLT3 phosphorylation, downstream signaling and malignant growth in vitro and in animal models. The drug exhibited limited activity as a single agent in phase I and II clinical trials in patients with AML and myelodysplastic syndrome, but displayed promising antileukemic activity (90% complete remissions) in a phase I/II trial in patients with newly diagnosed AML when administered in combination with cytarabine and daunorubicin. Phase II clinical trials for tandutinib in patients with Glioblastoma have being discontinued. The use of tandutinib to treat AML has been granted fast-track status by the U.S. Food and Drug Administration. Phase II trials were underway., but later withwrawn.
Crenolanib is an orally active, highly selective, small molecule, next generation inhibitor of platelet-derived growth factor receptor (PDGFR) tyrosine kinase. Crenolanib, manufactured by Arog Pharmaceuticals in Dallas, is taken orally with chemotherapy. The compound is currently being evaluated for safety and efficacy in clinical trials for various types of cancer, including acute myeloid leukemia (AML), gastrointestinal stromal tumor (GIST), and glioma. Crenolanib is an orally bioavailable, selective small molecule inhibitor of type III tyrosine kinases with nanomolar potencies against platelet-derived growth factor receptors (PDGFR) (isoforms PDGFRα and PDGFRβ) and Fms-related tyrosine kinase 3 (FLT3). Besides PDGFR and FLT3, crenolanib does not inhibit any other known receptor tyrosine kinase (RTK) (e.g. VEGFR and FGFR) or any other serine/threonine kinase (e.g., Abl, Raf) at clinically achievable concentrations. Preclinical trials have shown Crenolanib to be active in inhibiting both wild-type and mutant FLT3. Crenolanib is cytotoxic to the FLT3/ITD-expressing leukemia cell lines Molm14 and MV411, with IC50s of 7 nM and 8 nM, respectively. In immunoblots, crenolanib inhibited phosphorylation of both the wild-type FLT3 receptor (in SEMK2 cells) and the FLT3/ITD receptor (in Molm14 cells) in culture medium with IC50s of 1-3 nM. Importantly, the IC50 of crenolanib against the D835Y mutated form of FLT3 was 8.8 nM in culture medium. Furthermore, crenolanib had cytotoxic activity against primary samples that were obtained from patients who had developed D835 mutations while receiving FLT3 TKIs. In vitro, the IC50 of crenolanib for inhibition of FLT3/ITD in plasma was found to be 34 nM, indicating a relatively low degree of plasma protein binding. From pharmacokinetic studies of crenolanib in solid tumor patients, steady state trough plasma levels of roughly 500 nM were found to be safe and tolerable, suggesting that crenolanib could potentially inhibit the target in vivo. Crenolanib has no significant activity against c-KIT, which may be an advantage in that myelosuppression can be avoided.1Furthermore, there was no evidence of QTc prolongation in patients treated with crenolanib. In summary, crenolanib offers a number of advantages over other FLT3 TKIs. Clinical trials of crenolanib in AML patients with FLT3 activating mutations are being planned.
Staurosporine is an alkaloid isolated from the culture broth of Streptomyces staurosporesa. It exerts antimicrobial, hypotensive, and cytotoxic activity. The main biological activity of staurosporine is the inhibition of protein kinases through the prevention of ATP binding to the kinase. This is achieved through the stronger affinity of staurosporine to the ATP-binding site on the kinase. Staurosporine is a prototypical ATP-competitive kinase inhibitor in that it binds to many kinases with high affinity, though with little selectivity. It is a potent, cell permeable protein kinase C inhibitor with an IC50 of 0.7 nM. At higher concentration (1-20 nM), staurosporine also inhibits other kinases such as PKA, PKG, CAMKII and Myosin light chain kinase (MLCK). At 50-100 nM, it is a functional neurotrophin agonist, promoting neurite outgrowth in neuroblastoma, pheochromocytoma and brain primary neuronal cultures. At 0.2- 1 uM, staurosporine induces cell apoptosis. Staurosporine is also a potent GSK-3β inhibitor with a reported IC50 value of 15 nM. In research, staurosporine is used to induce apoptosis. It has been found that one way in which staurosporine induces apoptosis is by activating caspase-3. Staurosporine was discovered to have biological activities ranging from anti-fungal to anti-hypertensive. The interest in these activities resulted in a large investigative effort in chemistry and biology and the discovery of the potential for anti-cancer treatment. Staurosporine induces apoptosis by multiple pathways and that the inhibition of more than one kinase is responsible for its potent activity. Because the mechanism of action of staurosporine is distinct from traditional anticancer drugs, this may warrant further preclinical evaluations of the antitumor potential of new staurosporine derivatives either alone or in combination with death ligands or conventional chemotherapeutic drugs.
Toceranib (toceranib phosphate) is an orally bioavailable small molecule inhibitor that blocks a variety of RTKs, including VEGFR2, PDGFRa and KIT. In non-clinical pharmacology studies, toceranib selectively inhibited the tyrosine kinase activity of several members of the split kinase receptor tyrosine kinase (RTK) family, some of which are implicated in tumor growth, pathologic angiogenesis, and metastatic progression of cancer. Toceranib inhibited the activity of Flk-1/KDR tyrosine kinase (vascular endothelial growth factor receptor, VEGFR2), platelet-derived growth factor receptor (PDGFR), and stem cell factor receptor (Kit) in both biochemical and cellular assays. Toceranib has been shown to exert an antiproliferative effect on endothelial cells in vitro. Toceranib treatment can induce cell cycle arrest and subsequent apoptosis in tumor cell lines expressing activating mutations in the split kinase RTK, ckit. Canine mast cell tumor growth is frequently driven by activating mutations in c-kit. Toceranib is a dog-specific anti-cancer drug approved by the U.S. Food and Drug Administration. It is marketed as Palladia as its phosphate salt, toceranib phosphate by Pfizer. PALLADIA (Toceranib) tablets are indicated for the treatment of Patnaik grade II or III, recurrent, cutaneous mast cell tumors with or without regional lymph node involvement in dogs.
AL3818 (anlotinib) is a receptor tyrosine kinase inhibitor targeting vascular endothelial growth factor receptors (VEGFR1, VEGFR2/KDR, and VEGFR3), stem cell factor receptor (C-kit), platelet-derived growth factor (PDGFβ), and fibroblast growth factor receptors (FGFR1, FGFR2, and FGFR3). Anlotibib is a kind of innovative medicines approved by State Food and Drug Administration(SFDA:2011L00661) which was researched by Jiangsu Chia-tai Tianqing Pharmaceutical Co., Ltd. Phase III development is underway for the treatment of thyroid cancer, gastric cancer, leiomyosarcoma; non-small cell lung cancer; synovial sarcoma; thyroid cancer etc.
Masitinib is a new orally administered tyrosine kinase inhibitor that targets mast cells and macrophages, important cells for immunity, through inhibiting a limited number of kinases. Based on its unique mechanism of action, masitinib can be developed in a large number of conditions in oncology, in inflammatory diseases, and in certain diseases of the central nervous system. In oncology due to its immunotherapy effect, masitinib can have an effect on survival, alone or in combination with chemotherapy. Through its activity on mast cells and consequently the inhibition of the activation of the inflammatory process, masitinib can have an effect on the symptoms associated with some inflammatory and central nervous system diseases and the degeneration of these diseases. AB Science is developing masitinib in multiple sclerosis and alzheimer's disease. Masitinib targets kinases, including c-Kit, PDGFR, and Lyn. It is used in the treatment of mast cell tumors in animals, specifically dogs. Since its introduction in November 2008 it has been distributed under the commercial name Masivet. It has been available in Europe since the second part of 2009. In the USA it is distributed under the name Kinavet.