U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 11 - 20 of 56 results

Status:
Investigational
Source:
NCT00784290: Phase 1/Phase 2 Interventional Completed Hepatocellular Carcinoma
(2003)
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Orantinib (SU-6668) is an orally bioavailable receptor tyrosine kinase inhibitor. Orantinib binds to and inhibits the autophosphorylation of vascular endothelial growth factor receptor 2 (VEGFR2), platelet-derived growth factor receptor (PDGFR), and fibroblast growth factor receptor (FGFR), thereby inhibiting angiogenesis and cell proliferation. Orantinib also inhibits the phosphorylation of the stem cell factor receptor tyrosine kinase c-kit, often expressed in acute myelogenous leukemia cells. Orantinib was in phase II clinical trials for the treatment of breast cancer. It was also in phase III clinical trials for the treatment of hepatocellular carcinoma. However, this research was terminated in 2014. The compound was originally developed by Sugen (subsidiary of Pfizer). In 1998, a co-development agreement took place between Sugen and Taiho for the compound.
SU-14813 is an oral, multitargeted tyrosine kinase inhibitor (TKI) targeting vascular endothelial growth factor receptors (VEGFR), platelet-derived growth factor receptors (PDGFR), KIT, and fms-like tyrosine kinase 3 (FLT-3). SU-14813 was developed as a next-generation TKI agent following sunitinib (SU-11248) designed to demonstrate optimized pharmacokinetic (PK) and tolerability profiles. SU14813 demonstrated broad and potent antitumor activity equivalent to that of sunitinib, which resulted in tumor regression, growth arrest, growth delay, and prolonged survival in established xenograft cancer models in mice. A phase II trial of SU-14813 in patients with breast cancer was completed. However, according to the Pfizer pipeline development has been discontinued.
Status:
Investigational
Source:
NCT02204644: Phase 3 Interventional Completed CML, CML-CP,MMR,TKI
(2014)
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Flumatinib (HHGV678) is an orally bioavailable antineoplastic tyrosine kinase inhibitor. Flumatinib inhibits the wild-type forms of Bcr-Abl, platelet-derived growth factor receptor (PDGFR) and mast/stem cell growth factor receptor (SCFR; c-Kit) and forms of these proteins with certain point mutations. Flumatinib was extensively metabolized after oral administration, and the major metabolic pathways observed were amide hydrolysis, demethylation, oxidation, and glucuronide conjugation. It is in phase III clinical trials for the treatment of Chronic myeloid leukemia (in China).
Lucitanib (E-3810) is a novel multi-kinase inhibitor currently in clinical trials for its anti-angiogenic and anti-tumor activity. A Phase I/IIa clinical trial of lucitanib was initiated in 2010 and has demonstrated multiple objective responses in FGFR1 gene-amplified breast cancer patients, and objective responses were also observed in patients with tumors often sensitive to VEGFR inhibitors, such as renal cell and thyroid cancer. Lucitanib is an oral, potent inhibitor of the tyrosine kinase activity of fibroblast growth factor receptors 1 through 3 (FGFR1-3), vascular endothelial growth factor receptors 1 through 3 (VEGFR1-3) and platelet-derived growth factor receptors alpha and beta (PDGFR alpha-beta). The most common adverse events were hypertension, asthenia, and proteinuria.
Status:
Investigational
Source:
NCT00842335: Phase 1/Phase 2 Interventional Completed Advanced Solid Tumors
(2009)
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)


CGI-1842 (also known as JI-101) is an oral multi-kinase inhibitor that targets vascular endothelial growth factor receptor type 2 (VEGFR-2), platelet derived growth factor receptor β (PDGFR-β), and ephrin type-B receptor 4 that has been used in trials studying the treatment of Cancer, Colon Cancer, Neuroendocrine, Ovarian Cancer, and Advanced Solid Tumors. By targeting multiple angiogenesis signaling pathways in tumor vessel beds, CGI-1842 has the potential to inhibit multiple stages of tumor angiogenesis and thus enhance anti-tumor efficacy. In preclinical models, CGI-1842 induced concentration-dependent blocking of both EphB4- and VEGF-stimulated signaling pathways and has shown excellent antitumor activity. CGI-1842 is well tolerated in cancer patients and has shown impressive activity in Phase I clinical trials.
Status:
Investigational
Source:
NCT00304525: Phase 1/Phase 2 Interventional Completed Metastatic Melanoma
(2006)
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)


CHIR-265 (RAF265) is a potent selective orally active small molecule Raf-kinase inhibitor with anti‐angiogenic activity through inhibition of vascular endothelial growth factor type 2 (VEGFR‐2) in preclinical models. CHIR-265 effectively block phosphorylation of Raf's downstream substrates MEK and ERK in cells and also kill melanoma and colorectal cancer cell lines harboring B-Raf mutations independent of PTEN mutation status. Raf kinase inhibition by CHIR-265 in mutant B-Raf melanoma cell lines causes cell cycle arrest and induces apoptosis, mimicking the effect of Raf RNAi in these cells. CHIR-265 also potently inhibits the phosphorylation of VEGFR2 and proliferation of VEGF-stimulated hMVEC.
Vatalanib a potent oral tyrosine kinase inhibitor with a selective range of molecular targets, has been extensively investigated and has shown promising results in patients with solid tumors in early trials. Vatalanib selectively inhibits the tyrosine kinase domains of vascular endothelial growth factor (VEGF) receptor tyrosine kinases (important enzymes in the formation of new blood vessels that contribute to tumor growth and metastasis), platelet-derived growth factor (PDGF) receptor, and c-KIT. The adverse effects of vatalanib appear similar to those of other VEGF inhibitors. In the CONFIRM trials, the most common side effects were high blood pressure, gastrointestinal upset (diarrhea, nausea, and vomiting), fatigue, and dizziness.
Millennium Pharmaceuticals Inc's tandutinib (MLN-518), a piperazinyl derivative of quinazoline, is an orally active inhibitor of FLT3 kinase and family members PDGFR beta and c-Kit. Tandutinib inhibited FLT3 phosphorylation, downstream signaling and malignant growth in vitro and in animal models. The drug exhibited limited activity as a single agent in phase I and II clinical trials in patients with AML and myelodysplastic syndrome, but displayed promising antileukemic activity (90% complete remissions) in a phase I/II trial in patients with newly diagnosed AML when administered in combination with cytarabine and daunorubicin. Phase II clinical trials for tandutinib in patients with Glioblastoma have being discontinued. The use of tandutinib to treat AML has been granted fast-track status by the U.S. Food and Drug Administration. Phase II trials were underway., but later withwrawn.
Staurosporine is an alkaloid isolated from the culture broth of Streptomyces staurosporesa. It exerts antimicrobial, hypotensive, and cytotoxic activity. The main biological activity of staurosporine is the inhibition of protein kinases through the prevention of ATP binding to the kinase. This is achieved through the stronger affinity of staurosporine to the ATP-binding site on the kinase. Staurosporine is a prototypical ATP-competitive kinase inhibitor in that it binds to many kinases with high affinity, though with little selectivity. It is a potent, cell permeable protein kinase C inhibitor with an IC50 of 0.7 nM. At higher concentration (1-20 nM), staurosporine also inhibits other kinases such as PKA, PKG, CAMKII and Myosin light chain kinase (MLCK). At 50-100 nM, it is a functional neurotrophin agonist, promoting neurite outgrowth in neuroblastoma, pheochromocytoma and brain primary neuronal cultures. At 0.2- 1 uM, staurosporine induces cell apoptosis. Staurosporine is also a potent GSK-3β inhibitor with a reported IC50 value of 15 nM. In research, staurosporine is used to induce apoptosis. It has been found that one way in which staurosporine induces apoptosis is by activating caspase-3. Staurosporine was discovered to have biological activities ranging from anti-fungal to anti-hypertensive. The interest in these activities resulted in a large investigative effort in chemistry and biology and the discovery of the potential for anti-cancer treatment. Staurosporine induces apoptosis by multiple pathways and that the inhibition of more than one kinase is responsible for its potent activity. Because the mechanism of action of staurosporine is distinct from traditional anticancer drugs, this may warrant further preclinical evaluations of the antitumor potential of new staurosporine derivatives either alone or in combination with death ligands or conventional chemotherapeutic drugs.

Showing 11 - 20 of 56 results