U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}
Zonisamide is an antiseizure drug chemically classified as a sulfonamide and unrelated to other antiseizure agents. The precise mechanism by which zonisamide exerts its antiseizure effect is unknown, although it is believed that the drug blocks sodium and calcium channels, which leads to the suppression of neuronal hypersynchronization (i.e. convulsions). Sonisamide has also been found to potentiate dopaminergic and serotonergic neurotransmission but does not appear to potentiate syanptic activity by GABA (gamma amino butyric acid). Zonisamide binds to sodium channels and voltage sensitive calcium channels, which suppresses neuronal depolarization and hypersynchronization. Zonisamide also inhibits carbonic anhydrase to a weaker extent, but such an effect is not thought to contribute substantially to the drug's anticonvulsant activity. Zonisamide is approved in the United States, United Kingdom, and Australia for adjunctive treatment of partial seizures in adults and in Japan for both adjunctive and monotherapy for partial seizures (simple, complex, secondarily generalized), generalized (tonic, tonic-clonic (grand mal), and atypical absence) and combined seizures.
Pramipexole is a nonergot dopamine agonist with high relative in vitro specificity and full intrinsic activity at the D2 subfamily of dopamine receptors, binding with higher affinity to D3 than to D2 or D4 receptor subtypes. The relevance of D3 receptor binding in Parkinson's disease is unknown. The precise mechanism of action of Pramipexole as a treatment for Parkinson's disease is unknown, although it is believed to be related to its ability to stimulate dopamine receptors in the striatum. This conclusion is supported by electrophysiologic studies in animals that have demonstrated that Pramipexole influences striatal neuronal firing rates via activation of dopamine receptors in the striatum and the substantia nigra, the site of neurons that send projections to the striatum. Pramipexole is used for the treatment of signs and symptoms of idiopathic Parkinson's disease.
Furosemide, a sulfonamide-type loop diuretic structurally related to bumetanide, is used to manage hypertension and edema associated with congestive heart failure, cirrhosis, and renal disease, including the nephrotic syndrome. Furosemide inhibits water reabsorption in the nephron by blocking the sodium-potassium-chloride cotransporter (NKCC2) in the thick ascending limb of the loop of Henle. This is achieved through competitive inhibition at the chloride binding site on the cotransporter, thus preventing the transport of sodium from the lumen of the loop of Henle into the basolateral interstitium. Consequently, the lumen becomes more hypertonic while the interstitium becomes less hypertonic, which in turn diminishes the osmotic gradient for water reabsorption throughout the nephron. Because the thick ascending limb is responsible for 25% of sodium reabsorption in the nephron, furosemide is a very potent diuretic. Furosemide is sold under the brand name Lasix among others.
Methazolamide is topical carbonic anhydrase inhibitor. Methazolamide is indicated for the reduction of elevated intraocular pressure in patients with open-angle glaucoma or ocular hypertension who are insufficiently responsive to beta-blockers. Methazolamide is a sulfonamide derivative; however, it does not have any clinically significant antimicrobial properties. Although methazolamide achieves a high concentration in the cerebrospinal fluid, it is not-considered an effective anticonvulsant. Methazolamide has a weak and transient diuretic effect, therefore use results in an increase in urinary volume, with excretion of sodium, potassium and chloride. Methazolamide is a potent inhibitor of carbonic anhydrase. Inhibition of carbonic anhydrase in the ciliary processes of the eye decreases aqueous humor secretion, presumably by slowing the formation of bicarbonate ions with subsequent reduction in sodium and fluid transport. Methazolamide is used for treatment of chronic open-angle glaucoma and acute angle-closure glaucoma.
Like other thiazides, chlorothiazide promotes water loss from the body (diuretics). It inhibits Na /Cl- reabsorption from the distal convoluted tubules in the kidneys. Thiazides also cause loss of potassium and an increase in serum uric acid. Thiazides are often used to treat hypertension, but their hypotensive effects are not necessarily due to their diuretic activity. Thiazides have been shown to prevent hypertension-related morbidity and mortality although the mechanism is not fully understood. Thiazides cause vasodilation by activating calcium-activated potassium channels (large conductance) in vascular smooth muscles and inhibiting various carbonic anhydrases in vascular tissue. Chlorothiazide affects the distal renal tubular mechanism of electrolyte reabsorption. At maximal therapeutic dosages, all thiazides are approximately equal in their diuretic efficacy. Chlorothiazide increases excretion of sodium and chloride in approximately equivalent amounts. Natriuresis may be accompanied by some loss of potassium and bicarbonate. After oral doses, 10-15 percent of the dose is excreted unchanged in the urine. Chlorothiazide crosses the placental but not the blood-brain barrier and is excreted in breast milk. As a diuretic, chlorothiazide inhibits active chloride reabsorption at the early distal tubule via the Na-Cl cotransporter, resulting in an increase in the excretion of sodium, chloride, and water. Thiazides like chlorothiazide also inhibit sodium ion transport across the renal tubular epithelium through binding to the thiazide sensitive sodium-chloride transporter. This results in an increase in potassium excretion via the sodium-potassium exchange mechanism. The antihypertensive mechanism of chlorothiazide is less well understood although it may be mediated through its action on carbonic anhydrases in the smooth muscle or through its action on the large-conductance calcium-activated potassium (KCa) channel, also found in the smooth muscle. It is marketed under the brand name Diuril.
Status:
First approved in 1957

Class (Stereo):
CHEMICAL (RACEMIC)


Conditions:

Methocarbamol is a central muscle relaxant for skeletal muscles, used to treat spasms. It is structurally related to guaifenesin. Methocarbamol's exact mechanism of causing skeletal muscle relaxation is unknown. It is thought to work centrally, perhaps by general depressant effects. It has no direct relaxant effects on striated muscle, nerve fibers, or the motor endplate. It will not directly relax contracted skeletal muscles. The drug has a secondary sedative effect. Methocarbamol is used for use as an adjunct to rest, physical therapy, and other measures for the relief of discomforts associated with acute, painful musculoskeletal conditions. Under the trade name Robaxin, Methocarbamol is marketed by Actient Pharmaceuticals in the United States and Pfizer in Canada.
Acetazolamide, usually sold under the trade name Diamox in some countries. DIAMOX is used for adjunctive treatment of: chronic simple (open-angle) glaucoma, secondary glaucoma, and preoperatively in acute angle-closure glaucoma where delay of surgery is desired in order to lower intraocular pressure. DIAMOX is also indicated for the prevention or amelioration of symptoms associated with acute mountain sickness despite gradual ascent. DIAMOX is an enzyme inhibitor that acts specifically on carbonic anhydrase, the enzyme that catalyzes the reversible reaction involving the hydration of carbon dioxide and the dehydration of carbonic acid. In the eye, this inhibitory action of acetazolamide decreases the secretion of aqueous humor and results in a drop in intraocular pressure, a reaction considered desirable in cases of glaucoma and even in certain non-glaucomatous conditions. Evidence seems to indicate that DIAMOX has utility as an adjuvant in treatment of certain dysfunctions of the central nervous system (e.g., epilepsy). The diuretic effect of DIAMOX is due to its action in the kidney on the reversible reaction involving hydration of carbon dioxide and dehydration of carbonic acid. The result is renal loss of HCO3 ion, which carries out sodium, water, and potassium. It is on the World Health Organization's List of Essential Medicines, a list of the most important medications needed in a basic health system.
Status:
First approved in 1948
Source:
Sulfamylon by Winthrop
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)


Conditions:

Mafenide is a sulfonamide-type medication used as an antibiotic. It is indicated for use as an adjunctive topical antimicrobial agent to control bacterial infection when used under moist dressings over meshed autografts on excised burn wounds. Mafenide is not antagonized by pABA, serum, pus or tissue exudates, and there is no correlation between bacterial sensitivities to mafenide and to the sulfonamides. A single case of bone marrow depression and a single case of an acute attack of porphyria have been reported following therapy with mafenide acetate. Fatal hemolytic anemia with disseminated intravascular coagulation, presumably related to a glucose-6-phosphate dehydrogenase deficiency, has been reported following therapy with mafenide acetate. Other adverse reactions are: pain or burning sensation, rash and pruritis, erythema, skin maceration from prolonged wet dressings, facial edema, swelling, hives, blisters, eosinophilia.
Status:
First marketed in 1921
Source:
Sodium Nitrite U.S.P.
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Nitrite Ion is a symmetric anion with equal N–O bond lengths. Nitrite is important in biochemistry as a source of the potent vasodilator nitric oxide. Nitrate or nitrite (ingested) under conditions that result in endogenous nitrosation has been classified as "Probably carcinogenic to humans" (Group 2A) by International Agency for Research on Cancer (IARC), the specialized cancer agency of the World Health Organization (WHO) of the United Nations. Sodium nitrite is used for the curing of meat because it prevents bacterial growth and, as it is a reducing agent (opposite of oxidation agent), in a reaction with the meat's myoglobin, gives the product a desirable pink-red "fresh" color, such as with corned beef. This use of nitrite goes back to the Middle Ages, and in the US has been formally used since 1925. Because of the relatively high toxicity of nitrite (the lethal dose in humans is about 22 milligrams per kilogram of body weight), the maximum allowed nitrite concentration in meat products is 200 ppm. At these levels, some 80 to 90% of the nitrite in the average U.S. diet is not from cured meat products, but from natural nitrite production from vegetable nitrate intake. Under certain conditions – especially during cooking – nitrites in meat can react with degradation products of amino acids, forming nitrosamines, which are known carcinogens. However, the role of nitrites (and to some extent nitrates) in preventing botulism by preventing C. botulinum endospores from germinating have prevented the complete removal of nitrites from cured meat, and indeed by definition in the U.S., meat cannot be labeled as "cured" without nitrite addition. They are considered irreplaceable in the prevention of botulinum poisoning from consumption of cured dry sausages by preventing spore germination. Nitrite is a member of the drug class antidotes and is used to treat Cyanide Poisoning.
Diammonium carbonate is a salt with the chemical formula (NH4)2CO3. Since it readily degrades to gaseous ammonia and carbon dioxide upon heating, it is used as a leavening agent and also as smelling salt. Ammonium carbonate may be used as a leavening agent in traditional recipes, particularly those from northern Europe and Scandinavia (e.g. Speculoos, Tunnbröd or Lebkuchen). It also serves as an acidity regulator and has the E number E503. Ammonium carbonate is the main component of smelling salts, although the commercial scale of their production is small. Buckley's cough syrup from Canada today uses ammonium carbonate as an active ingredient intended to help relieve symptoms of bronchitis. Ammonium carbonate is also used as an emetic.