U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 11 - 20 of 63 results

Idazoxan is an alpha2 receptor antagonist which also shows activity at imidazoline I1 and I2 receptors and modulates the release of dopamine. Idazoxan was in phase II development in the US. Later the development of idazoxan for schizophrenia was discontinued. It was also in clinical trials for cognition disorders in United Kingdom, and was also discontinued. Idazoxan is used in scientific research as a tool for the study of alpha 2-adrenoceptors.
Status:
Investigational
Source:
INN:dexefaroxan [INN]
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)


Dexefaroxan is a selective alpha 2-adrenergic receptor antagonist. Вexefaroxan improved TgCRND8 (protein-transgenic mouse model of Alzheimer's disease) behavioral phenotypes and increased BDNF mRNA expression without affecting amyloid-β peptide levels. Dexefaroxan treatment also enhanced the number and complexity of the dendritic arborizations of polysialated neural cell adhesion molecule-positive neurons. The trophic effects of dexefaroxan on newborn cells might involve an increase in brain-derived neurotrophic factor, which was upregulated in afferent noradrenergic fiber projection areas and in neurons in the granule cell layer. By promoting the survival of new endogenously formed neurons, dexefaroxan treatment represents a potential therapeutic strategy for maintaining adult neurogenesis in neurodegenerative conditions, such as Alzheimer's disease, that affect the hippocampus. Dexefaroxan increases neuron survival in the olfactory bulb of the adult rat in vivo, putatively as a result of reducing the apoptotic fate of telencephalic stem cell progenies.
Akuammigine is an oxindole alkaloid. Akuammigine shows antiadrenergic activity and thus reduces heart rate.
(-)-octopamine is an enantiomer of octopamine, a naturally occurring phenolamine acting as a neurotransmitter in invertebrates. Octopamine is considered to be trace amine present in mammalian tissues at very low (nanomolar) concentrations. Generally, the (-)-enantiomers of octopamine are more active than the (+)-enantiomers at adrenergic receptors. However (+)-octopamine is more potent than the (-)-octopamine as an inhibitor of semicarbazide-sensitive amine oxidase.
(+)-octopamine is an enantiomer of octopamine, a naturally occurring phenolamine acting as a neurotransmitter in invertebrates. Octopamine is considered to be trace amine present in mammalian tissues at very low (nanomolar) concentrations. Generally, the (+)-enantiomers of octopamine are less active than the (-)-enantiomers at adrenergic receptors. However (+)-octopamine is more potent than the (-)-octopamine as an inhibitor of semicarbazide-sensitive amine oxidase.
Status:
Other

Class (Stereo):
CHEMICAL (RACEMIC)



BRL-44408, a potent (Ki=8.5 nM) and selective (>50-fold) α2A-adrenoceptor antagonist (KB=7.9 nM). BRL-44408 revealed antidepressant- and analgesic-like activity through selective alpha2A-adrenoceptor antagonism. Preclinical characterization of the neurochemical and behavioural profile of BRL-44408 suggests that selective antagonism of alpha2A-adrenoceptors may represent an effective treatment strategy for mood disorders and visceral pain. BRL-44408 increases hippocampal noradrenalin release following systemic administration. BRL-44408 has potential therapeutic application in the treatment of extrapyramidal side effects produced by some antipsychotic medications.