Stereochemistry | ABSOLUTE |
Molecular Formula | C8H11NO2 |
Molecular Weight | 153.1784 |
Optical Activity | UNSPECIFIED |
Defined Stereocenters | 1 / 1 |
E/Z Centers | 0 |
Charge | 0 |
SHOW SMILES / InChI
SMILES
NC[C@@H](O)C1=CC=C(O)C=C1
InChI
InChIKey=QHGUCRYDKWKLMG-MRVPVSSYSA-N
InChI=1S/C8H11NO2/c9-5-8(11)6-1-3-7(10)4-2-6/h1-4,8,10-11H,5,9H2/t8-/m1/s1
(+)-octopamine is an enantiomer of octopamine, a naturally occurring phenolamine acting as a neurotransmitter in invertebrates. Octopamine is considered to be trace amine present in mammalian tissues at very low (nanomolar) concentrations. Generally, the (+)-enantiomers of octopamine are less active than the (-)-enantiomers at adrenergic receptors. However (+)-octopamine is more potent than the (-)-octopamine as an inhibitor of semicarbazide-sensitive amine oxidase.
Originator
Approval Year
Targets
Primary Target | Pharmacology | Condition | Potency |
---|---|---|---|
4.68 null [pIC50] | |||
2.0 null [pIC50] | |||
Conditions
Condition | Modality | Targets | Highest Phase | Product |
---|---|---|---|---|
PubMed
Sample Use Guides
The phenolamines, octopamine and synephrine were only able to couple the alpha 2A-adrenoceptor to a dose-dependent decrease in cyclic AMP production at concentrations up to 1 mM, with the synephrine isomers being more potent than the corresponding octopamine isomers. The meta-isomers of both phenolamines were more potent than the corresponding para-isomers and the (-)-enantiomers were more potent than the (+)-enantiomers. Thus, (-)-meta-synephrine [(-)-phenylephrine] was the most effective isomer tested with an observable decrease occurring between 100 nM and 1 microM.