U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 381 - 390 of 661 results

Fluphenazine is a trifluoro-methyl phenothiazine derivative intended for the management of schizophrenia and other psychotic disorders. Fluphenazine has not been shown effective in the management of behaviorial complications in patients with mental retardation. Fluphenazine blocks postsynaptic mesolimbic dopaminergic D1 and D2 receptors in the brain; depresses the release of hypothalamic and hypophyseal hormones and is believed to depress the reticular activating system thus affecting basal metabolism, body temperature, wakefulness, vasomotor tone, and emesis.
Furadantin (nitrofurantoin), a synthetic chemical, is a stable, yellow, crystalline compound. Furadantin is an antibacterial agent for specific urinary tract infections. Orally administered Furadantin is readily absorbed and rapidly excreted in urine. Blood concentrations at therapeutic dosage are usually low. Unlike many drugs, the presence of food or agents delaying gastric emptying can increase the bioavailability of Furadantin, presumably by allowing better dissolution in gastric juices. Nitrofurantoin is active against some gram positive organisms such as S. aureus, S. epidermidis, S. saprophyticus, Enterococcus faecalis, S. agalactiae, group D streptococci, viridians streptococci and Corynebacterium. Its spectrum of activity against gram negative organisms includes E. coli, Enterobacter, Neisseria, Salmonella and Shigella. It may be used as an alternative to trimethoprim/sulfamethoxazole for treating urinary tract infections though it may be less effective at eradicating vaginal bacteria. May also be used in females as prophylaxis against recurrent cystitis related to coitus. Nitrofurantoin is highly stable to the development of bacterial resistance, a property thought to be due to its multiplicity of mechanisms of action. Nitrofurantoin is activated by bacterial flavoproteins (nitrofuran reductase) to active reduced reactive intermediates that are thought to modulate and damage ribosomal proteins or other macromolecules, especially DNA, causing inhibition of DNA, RNA, protein, and cell wall synthesis. The overall effect is inhibition of bacterial growth or cell death.
Furadantin (nitrofurantoin), a synthetic chemical, is a stable, yellow, crystalline compound. Furadantin is an antibacterial agent for specific urinary tract infections. Orally administered Furadantin is readily absorbed and rapidly excreted in urine. Blood concentrations at therapeutic dosage are usually low. Unlike many drugs, the presence of food or agents delaying gastric emptying can increase the bioavailability of Furadantin, presumably by allowing better dissolution in gastric juices. Nitrofurantoin is active against some gram positive organisms such as S. aureus, S. epidermidis, S. saprophyticus, Enterococcus faecalis, S. agalactiae, group D streptococci, viridians streptococci and Corynebacterium. Its spectrum of activity against gram negative organisms includes E. coli, Enterobacter, Neisseria, Salmonella and Shigella. It may be used as an alternative to trimethoprim/sulfamethoxazole for treating urinary tract infections though it may be less effective at eradicating vaginal bacteria. May also be used in females as prophylaxis against recurrent cystitis related to coitus. Nitrofurantoin is highly stable to the development of bacterial resistance, a property thought to be due to its multiplicity of mechanisms of action. Nitrofurantoin is activated by bacterial flavoproteins (nitrofuran reductase) to active reduced reactive intermediates that are thought to modulate and damage ribosomal proteins or other macromolecules, especially DNA, causing inhibition of DNA, RNA, protein, and cell wall synthesis. The overall effect is inhibition of bacterial growth or cell death.
Thiamine, also known as vitamin B1, plays a key role in the human metabolism. It is present in many dietary sources such as meats, eggs, fish, beans and peas, nuts, and whole grains. Upon administration thiamine is converted by thiamine pyrophosphokinase-1 (TPK1) to the active form, thiamine pyrophosphate, which serves as a cofactor for enzymes involved in the TCA cycle and the non-oxidative part of the pentose phosphate pathway. The lack of thiamine may cause the thiamine deficiency. The classical syndrome caused primarily by thiamine deficiency in humans is beriberi, however, symptoms of thiamine deficiency also include congestive heart failure, metabolic acidosis, confusion, ataxia and seizures. Thiamine is a component of many vitamin complexes, which are approved for the treatmen and prevention of general vitamin deficiency, including the thiamine deficiency.
Thiamine, also known as vitamin B1, plays a key role in the human metabolism. It is present in many dietary sources such as meats, eggs, fish, beans and peas, nuts, and whole grains. Upon administration thiamine is converted by thiamine pyrophosphokinase-1 (TPK1) to the active form, thiamine pyrophosphate, which serves as a cofactor for enzymes involved in the TCA cycle and the non-oxidative part of the pentose phosphate pathway. The lack of thiamine may cause the thiamine deficiency. The classical syndrome caused primarily by thiamine deficiency in humans is beriberi, however, symptoms of thiamine deficiency also include congestive heart failure, metabolic acidosis, confusion, ataxia and seizures. Thiamine is a component of many vitamin complexes, which are approved for the treatmen and prevention of general vitamin deficiency, including the thiamine deficiency.
Thiamine, also known as vitamin B1, plays a key role in the human metabolism. It is present in many dietary sources such as meats, eggs, fish, beans and peas, nuts, and whole grains. Upon administration thiamine is converted by thiamine pyrophosphokinase-1 (TPK1) to the active form, thiamine pyrophosphate, which serves as a cofactor for enzymes involved in the TCA cycle and the non-oxidative part of the pentose phosphate pathway. The lack of thiamine may cause the thiamine deficiency. The classical syndrome caused primarily by thiamine deficiency in humans is beriberi, however, symptoms of thiamine deficiency also include congestive heart failure, metabolic acidosis, confusion, ataxia and seizures. Thiamine is a component of many vitamin complexes, which are approved for the treatmen and prevention of general vitamin deficiency, including the thiamine deficiency.
Thiamine, also known as vitamin B1, plays a key role in the human metabolism. It is present in many dietary sources such as meats, eggs, fish, beans and peas, nuts, and whole grains. Upon administration thiamine is converted by thiamine pyrophosphokinase-1 (TPK1) to the active form, thiamine pyrophosphate, which serves as a cofactor for enzymes involved in the TCA cycle and the non-oxidative part of the pentose phosphate pathway. The lack of thiamine may cause the thiamine deficiency. The classical syndrome caused primarily by thiamine deficiency in humans is beriberi, however, symptoms of thiamine deficiency also include congestive heart failure, metabolic acidosis, confusion, ataxia and seizures. Thiamine is a component of many vitamin complexes, which are approved for the treatmen and prevention of general vitamin deficiency, including the thiamine deficiency.
Thiamine, also known as vitamin B1, plays a key role in the human metabolism. It is present in many dietary sources such as meats, eggs, fish, beans and peas, nuts, and whole grains. Upon administration thiamine is converted by thiamine pyrophosphokinase-1 (TPK1) to the active form, thiamine pyrophosphate, which serves as a cofactor for enzymes involved in the TCA cycle and the non-oxidative part of the pentose phosphate pathway. The lack of thiamine may cause the thiamine deficiency. The classical syndrome caused primarily by thiamine deficiency in humans is beriberi, however, symptoms of thiamine deficiency also include congestive heart failure, metabolic acidosis, confusion, ataxia and seizures. Thiamine is a component of many vitamin complexes, which are approved for the treatmen and prevention of general vitamin deficiency, including the thiamine deficiency.
Thiamine, also known as vitamin B1, plays a key role in the human metabolism. It is present in many dietary sources such as meats, eggs, fish, beans and peas, nuts, and whole grains. Upon administration thiamine is converted by thiamine pyrophosphokinase-1 (TPK1) to the active form, thiamine pyrophosphate, which serves as a cofactor for enzymes involved in the TCA cycle and the non-oxidative part of the pentose phosphate pathway. The lack of thiamine may cause the thiamine deficiency. The classical syndrome caused primarily by thiamine deficiency in humans is beriberi, however, symptoms of thiamine deficiency also include congestive heart failure, metabolic acidosis, confusion, ataxia and seizures. Thiamine is a component of many vitamin complexes, which are approved for the treatmen and prevention of general vitamin deficiency, including the thiamine deficiency.
Thiamine, also known as vitamin B1, plays a key role in the human metabolism. It is present in many dietary sources such as meats, eggs, fish, beans and peas, nuts, and whole grains. Upon administration thiamine is converted by thiamine pyrophosphokinase-1 (TPK1) to the active form, thiamine pyrophosphate, which serves as a cofactor for enzymes involved in the TCA cycle and the non-oxidative part of the pentose phosphate pathway. The lack of thiamine may cause the thiamine deficiency. The classical syndrome caused primarily by thiamine deficiency in humans is beriberi, however, symptoms of thiamine deficiency also include congestive heart failure, metabolic acidosis, confusion, ataxia and seizures. Thiamine is a component of many vitamin complexes, which are approved for the treatmen and prevention of general vitamin deficiency, including the thiamine deficiency.

Showing 381 - 390 of 661 results