U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 71 - 80 of 2778 results

Rotigotine is an agonist at all 5 dopamine receptor subtypes (D1-D5) but binds to the D3 receptor with the highest affinity. It is also an antagonist at α-2-adrenergic receptors and an agonist at the 5HT1A receptors. Rotigotine also inhibits dopamine uptake and prolactin secretion. It is FDA approved for the treatment of Parkinson's disease, restless legs syndrome. Dopamine antagonists, such as antipsychotics or metoclopramide, may diminish the effectiveness of Rotigotine. Common adverse reactions include nausea, vomiting, somnolence, application site reactions, dizziness, anorexia, hyperhidrosis, insomnia and dyskinesia.
Nebivolol is a competitive and highly selective beta-1 receptor antagonist with mild vasodilating properties, possibly due to an interaction with the L-arginine/nitric oxide pathway. In preclinical studies, nebivolol has been shown to induce endothelium-dependent arterial relaxation in a dose dependent manner, by stimulation of the release of endothelial nitric oxide. Nitric oxide acts to relax vascular smooth muscle cells and inhibits platelet aggregation and adhesion. Activation of β1-receptors by epinephrine increases the heart rate and the blood pressure, and the heart consumes more oxygen. Nebivolol blocks these receptors which reverses the effects of epinephrine, lowering the heart rate and blood pressure. In addition, beta blockers prevent the release of renin, which is a hormone produced by the kidneys which leads to constriction of blood vessels. At high enough concentrations, this drug may also bind beta 2 receptors. Marketed under the brand name BYSTOLIC, Nebivolol is indicated for the treatment of hypertension, to lower blood pressure. Lowering blood pressure reduces the risk of fatal and nonfatal cardiovascular events, primarily strokes and myocardial infarctions.

Class (Stereo):
CHEMICAL (ABSOLUTE)



Maraviroc (UK-427,857; brand-named Selzentry, or Celsentri outside the U.S) is a selective CCR5 antagonist with potent anti-human immunodeficiency virus type 1 (HIV-1) activity and favorable pharmacological properties. Maraviroc is the product of a medicinal chemistry effort initiated following identification of an imidazopyridine CCR5 ligand from a high-throughput screen of the Pfizer compound file. Selzentry, in combination with other antiretroviral agents, is indicated for adult patients infected with only CCR5-tropic HIV-1. This indication is based on analyses of plasma HIV-1 RNA levels in two controlled trials of SELZENTRY in treatment-experienced subjects and one trial in treatment-naive subjects. Maraviroc selectively binds to the human chemokine receptor CCR5 present on the cell membrane, preventing the interaction of HIV-1 gp120 and CCR5 necessary for CCR5-tropic HIV-1 to enter cells. CXCR4-tropic and dual-tropic HIV-1 entry is not inhibited by maraviroc. Antiviral Activity in Cell Culture Maraviroc inhibits the replication of CCR5-tropic laboratory strains and primary isolates of HIV-1 in models of acute peripheral blood leukocyte infection. The mean EC50 value (50% effective concentration) for maraviroc against HIV-1 group M isolates (subtypes A to J and circulating recombinant form AE) and group O isolates ranged from 0.1 to 4.5 nM (0.05 to 2.3 ng per mL) in cell culture. When used with other antiretroviral agents in cell culture, the combination of maraviroc was not antagonistic with NNRTIs (delavirdine, efavirenz, and nevirapine), NRTIs (abacavir, didanosine, emtricitabine, lamivudine, stavudine, tenofovir, zalcitabine, and zidovudine), or protease inhibitors (amprenavir, atazanavir, darunavir, indinavir, lopinavir, nelfinavir, ritonavir, saquinavir, and tipranavir). Maraviroc was not antagonistic with the HIV fusion inhibitor enfuvirtide. Maraviroc was not active against CXCR4-tropic and dual-tropic viruses (EC50 value greater than 10 µM). The antiviral activity of maraviroc against HIV-2 has not been evaluated. Maraviroc can cause serious, life-threatening side effects such as, liver problems, skin reactions, and allergic reactions.
Paliperidone (9-OH-risperidone) is the primary active metabolite of the older antipsychotic risperidone. While its specific mechanism of action is unknown, it is believed that paliperidone and risperidone act via similar if not the same pathways. It has been proposed that the drug's therapeutic activity in schizophrenia is mediated through a combination of central dopamine Type 2 (D2) and serotonin Type 2 (5HT2A) receptor antagonism. Paliperidone is also active as an antagonist at alpha 1 and alpha 2 adrenergic receptors and H1 histaminergic receptors, which may explain some of the other effects of the drug. Paliperidone was approved by the FDA for treatment of schizophrenia on December 20, 2006. Very common adverse effects are: headache, tachycardia, somnolence and insomnia.
Conivaptan is an arginine vasopressin (AVP) receptor antagonist with affinity for AVP receptor subtypes V1A and V2. The antidiuretic action of AVP is mediated through activation of the V2 receptor, which functions to regulate water and electrolyte balance at the level of the collecting ducts in the kidney. Conivaptan was approved in 2004 for hyponatremia caused by syndrome of inappropriate antidiuretic hormone. Conicaptan is being evaluated for reduce intracranial pressure in patients with traumatic brain injury, and as a treatment for heart failure.
Glutamine is a non-essential amino acid present abundantly throughout the body and is involved in many metabolic processes. It is synthesized from glutamic acid and ammonia. It is the principal carrier of nitrogen in the body and is an important energy source for many cells. Supplemental L-glutamine's possible immunomodulatory role may be accounted for in a number of ways. L-glutamine appears to play a major role in protecting the integrity of the gastrointestinal tract and, in particular, the large intestine. During catabolic states, the integrity of the intestinal mucosa may be compromised with consequent increased intestinal permeability and translocation of Gram-negative bacteria from the large intestine into the body. The demand for L-glutamine by the intestine, as well as by cells such as lymphocytes, appears to be much greater than that supplied by skeletal muscle, the major storage tissue for L-glutamine. L-glutamine is the preferred respiratory fuel for enterocytes, colonocytes and lymphocytes. Therefore, supplying supplemental L-glutamine under these conditions may do a number of things. For one, it may reverse the catabolic state by sparing skeletal muscle L-glutamine. It also may inhibit translocation of Gram-negative bacteria from the large intestine. L-glutamine helps maintain secretory IgA, which functions primarily by preventing the attachment of bacteria to mucosal cells. L-glutamine appears to be required to support the proliferation of mitogen-stimulated lymphocytes, as well as the production of interleukin-2 (IL-2) and interferon-gamma (IFN-gamma). It is also required for the maintenance of lymphokine-activated killer cells (LAK). L-glutamine can enhance phagocytosis by neutrophils and monocytes. It can lead to an increased synthesis of glutathione in the intestine, which may also play a role in maintaining the integrity of the intestinal mucosa by ameliorating oxidative stress. The exact mechanism of the possible immunomodulatory action of supplemental L-glutamine, however, remains unclear. It is conceivable that the major effect of L-glutamine occurs at the level of the intestine. Perhaps enteral L-glutamine acts directly on intestine-associated lymphoid tissue and stimulates overall immune function by that mechanism, without passing beyond the splanchnic bed. Glutamine is used for nutritional supplementation, also for treating dietary shortage or imbalance.
Status:
First approved in 2004

Class (Stereo):
CHEMICAL (ABSOLUTE)



Darifenacin is a selective muscarinic receptor M3 antagonist which was approved by FDA for the treatment of overactive bladder.
Acamprosate was the third medication, after disulfiram and naltrexone, to receive U.S. Food and Drug Administration (FDA) approval for postwithdrawal maintenance of alcohol abstinence. The French pharmaceutical company Laboratoires Meram began clinical development and testing of acamprosate in 1982. From 1982 to 1988, acamprosate was tested for safety and for efficacy as a treatment for alcohol dependence. Based on these studies, in 1989 Laboratoires Meram was granted marketing authorization for acamprosate in France under the trade name Aotal®. Since then, acamprosate has been extensively used and studied throughout Europe and, subsequently, in the United States. Although acamprosate has been used in Europe for more than 20 years, it was not approved by FDA until July 2004. Acamprosate became available for use in the United States in January 2005, under the trade name Campral® Delayed-Release Tablets (Merck Santé, a subsidiary of Merck KGaA, Darmstadt, Germany). Campral is currently marketed in the United States by Forest Pharmaceuticals. The mechanism of action of acamprosate in maintenance of alcohol abstinence is not completely understood. Chronic alcohol exposure is hypothesized to alter the normal balance between neuronal excitation and inhibition. in vitro and in vivo studies in animals have provided evidence to suggest acamprosate may interact with glutamate and GABA neurotransmitter systems centrally, and has led to the hypothesis that acamprosate restores this balance. It seems to inhibit NMDA receptors while activating GABA receptors.
Status:
First approved in 2004

Class (Stereo):
CHEMICAL (ACHIRAL)



Trospium is an antispasmodic, antimuscarinic agent indicated for the treatment of overactive bladder with symptoms of urge urinary incontinence, urgency, and urinary frequency. Receptor assays showed that trospium has negligible affinity for nicotinic receptors as compared to muscarinic receptors at concentrations obtained from therapeutic doses. Trospium antagonizes the effect of acetylcholine on muscarinic receptors in cholinergically innervated organs. Its parasympatholytic action reduces the tonus of smooth muscle in the bladder. Trospium is marketed under the brand name Sancturain the US, Tropez OD in India,Trosec in Canada, Regurin and Flotros in the United Kingdom and Spasmex in Germany, Russia, Turkey, Argentina, Chile and Israel.
Solifenacin is a competitive muscarinic acetylcholine receptor antagonist. The binding of acetylcholine to these receptors, particularly the M3 receptor subtype, plays a critical role in the contraction of smooth muscle. By preventing the binding of acetylcholine to these receptors, solifenacin reduces smooth muscle tone in the bladder, allowing the bladder to retain larger volumes of urine. It is FDA approved for the treatment of overactive bladder with symptoms of urge urinary incontinence, urgency, and urinary frequency. Common adverse reactions include constipation, Xerostomia. Inhibitors of CYP3A4 may increase the concentration of Solifenacin. Vice versa, CYP3A4 Inducers decrease concentration.