U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 471 - 480 of 2141 results

Status:
First approved in 1957
Source:
Norlutin by Parke-Davis
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Norethisterone (INN, BAN), also known as Norethindrone (USAN) (brand names Micronor, AYGESTIN, numerous others) is a synthetic progestational hormone (progestin) with actions similar to those of progesterone but functioning as a more potent inhibitor of ovulation. It has weak estrogenic and androgenic properties. The hormone has been used for the treatment of secondary amenorrhea, endometriosis, and abnormal uterine bleeding due to hormonal imbalance in the absence of organic pathology, such as submucous fibroids or uterine cancer. AYGESTIN® is not intended, recommended or approved to be used with oncomitant estrogen therapy in postmenopausal women for endometrial protection. Progestins diffuse freely into target cells and bind to the progesterone receptor. Target cells include the female reproductive tract, the mammary gland, the hypothalamus, and the pituitary. Once bound to the receptor, progestins slow the frequency of release of gonadotropin releasing hormone (GnRH) from the hypothalamus and blunt the pre-ovulatory LH surge. Allergic reaction could be: Itching or hives, swelling in your face or hands, swelling or tingling in your mouth or throat, chest tightness, trouble breathing.

Class (Stereo):
CHEMICAL (RACEMIC)


Conditions:

Mesuximide (or methsuximide) is an anticonvulsant medication. It is sold by Pfizer under the name Petinutin. Binds to T-type voltage sensitive calcium channels. Voltage-sensitive calcium channels (VSCC) mediate the entry of calcium ions into excitable cells and are also involved in a variety of calcium-dependent processes, including muscle contraction, hormone or neurotransmitter release, gene expression, cell motility, cell division and cell death. The isoform alpha-1G gives rise to T-type calcium currents. T-type calcium channels belong to the "low-voltage activated (LVA)" group and are strongly blocked by mibefradil. A particularity of this type of channels is an opening at quite negative potentials and a voltage-dependent inactivation. T-type channels serve pacemaking functions in both central neurons and cardiac nodal cells and support calcium signaling in secretory cells and vascular smooth muscle. They may also be involved in the modulation of firing patterns of neurons which is important for information processing as well as in cell growth processes. Mesuximide is used for the control of absence (petit mal) seizures that are refractory to other drugs.
Methylphenidate is a CNS stimulant approved for the treatment of narcolepsy and attention deficit hyperactivity disorder. The drug is believed to bind the dopamine transporter in the presynaptic cell membrane, thereby blocking the reuptake of dopamine and causing an increase in extracellular dopamine levels.
Status:
First approved in 1955
Source:
Pyrazinamide by Merck (Merck Sharp & Dohme)
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)


Conditions:

Pyrazinamide is indicated for the initial treatment of active tuberculosis in adults and children when combined with other antituberculous agents. (The current recommendation of the CDC for drug-susceptible disease is to use a six-month regimen for initial treatment of active tuberculosis, consisting of isoniazid, rifampin and pyrazinamide given for 2 months, followed by isoniazid and rifampin for 4 months. Pyrazinamide should only be used in conjunction with other effective antituberculous agents. Pyrazinamide diffuses into M. tuberculosis, where the enzyme pyrazinamidase converts pyrazinamide to the active form pyrazinoic acid. Under acidic conditions, the pyrazinoic acid that slowly leaks out converts to the protonated conjugate acid, which is thought to diffuse easily back into the bacilli and accumulate. The net effect is that more pyrazinoic acid accumulates inside the bacillus at acid pH than at neutral pH. Pyrazinoic acid was thought to inhibit the enzyme fatty acid synthase (FAS) I, which is required by the bacterium to synthesise fatty acids. However, this theory was thought to have been discounted. However, further studies reproduced the results of FAS I inhibition as the putative mechanism first in whole cell assay of replicating M. tuberculosis bacilli which have shown that pyrazinoic acid and its ester inhibit the synthesis of fatty acids . This study was followed by in vitro assay of tuberculous FAS I enzyme that tested the activity with pyrazinamide, pyrazinoic acid and several classes of pyrazinamide analogs. Pyrazinamide and its analogs inhibited the activity of purified FAS I. It has also been suggested that the accumulation of pyrazinoic acid disrupts membrane potential and interferes with energy production, necessary for survival of M. tuberculosis at an acidic site of infection. Pyrazinoic acid has also been shown to bind to the ribosomal protein S1 (RpsA) and inhibit trans-translation. This may explain the ability of the drug to kill dormant mycobacteria
Primidone is an anticonvulsant of the barbiturate class. It was introduced in 1954 under the brand name Mysoline by Wyeth in the United States. Mysoline, used alone or concomitantly with other anticonvulsants, is indicated in the control of grand mal, psychomotor, and focal epileptic seizures. It may control grand mal seizures refractory to other anticonvulsant therapy. Mysoline raises electro- or chemoshock seizure thresholds or alters seizure patterns in experimental animals. The mechanism(s) of primidone’s antiepileptic action is not known. Primidone per se has anticonvulsant activity, as do its two metabolites, phenobarbital and phenylethylmalonamide (PEMA). In addition to its anticonvulsant activity, PEMA potentiates the anticonvulsant activity of phenobarbital in experimental animals. Primidone itself doesn’t act on GABA-A receptors. It is active metabolite - phenobarbital primary acts via modulation of GABA -A receptors. The most frequently occurring early side effects are ataxia and vertigo. These tend to disappear with continued therapy, or with reduction of initial dosage. Occasionally, the following have been reported: nausea, anorexia, vomiting, fatigue, hyperirritability, emotional disturbances, sexual impotency, diplopia, nystagmus, drowsiness, and morbilliform skin eruptions.Granulocytopenia, agranulocytosis, and red-cell hypoplasia and aplasia, have been reported rarely. These and, occasionally, other persistant or severe side effects may necessitate withdrawal of the drug. Megaloblastic anemia may occur as a rare idiosyncrasy to Mysoline and to other anticonvulsants. The anemia responds to folic acid without necessity of discontinuing medication.
Metaraminol is a potent sympathomimetic amine that increases both systolic and diastolic blood pressure, is an adrenergic receptor alpha-1 agonist.. Metaraminol is indicated for prevention and treatment of the acute hypotensive state occurring with spinal anesthesia. It is also indicated as adjunctive treatment of hypotension due to hemorrhage, reactions to medications, surgical complications, and shock associated with brain damage due to trauma or tumor. Metaraminol is also used in the treatment of priapism, in spite of this application was not approved, it appears to be effective.
Status:
First approved in 1954
Source:
Myleran by Burroughs Wellcome
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)

Targets:


Busulfan is a bifunctional alkylating agent, having a selective immunosuppressive effect on bone marrow. It has been used in the palliative treatment of chronic myeloid leukemia (myeloid leukemia, chronic). Most common adverse reactions (incidence greater than 60%) were: myelosuppression, nausea, stomatitis, vomiting, anorexia, diarrhea, insomnia, fever, hypomagnesemia, abdominal pain, anxiety, headache, hyperglycemia and hypokalemia. Itraconazole and acetaminophen can decrease busulfan clearance. Phenytoin increases hepatic clearance of busulfan.
Methoxsalen — also called xanthotoxin, marketed under the trade names Oxsoralen, Deltasoralen, Meladinine — is a drug used to treat psoriasis, eczema, vitiligo, and some cutaneous lymphomas in conjunction with exposing the skin to UVA light from lamps or sunlight. Methoxsalen modifies the way skin cells receive the UVA radiation, allegedly clearing up the disease. The dosage comes in 10 mg tablets, which are taken in the amount of 30 mg 75 minutes before a PUVA (psoralen + UVA) light treatment. Chemically, methoxsalen belongs to a class of organic natural molecules known as furanocoumarins. They consist of coumarin annulated with furan. It can also be injected and used topically. The exact mechanism of action of methoxsalen with the epidermal melanocytes and keratinocytes is not known. The best known biochemical reaction of methoxsalen is with DNA. Methoxsalen, upon photoactivation, conjugates and forms covalent bonds with DNA which leads to the formation of both monofunctional (addition to a single strand of DNA) and bifunctional adducts (crosslinking of psoralen to both strands of DNA) Reactions with proteins have also been described. Methoxsalen acts as a photosensitizer. Administration of the drug and subsequent exposure to UVA can lead to cell injury. Orally administered methoxsalen reaches the skin via the blood and UVA penetrates well into the skin. If sufficient cell injury occurs in the skin, an inflammatory reaction occurs. The most obvious manifestation of this reaction is delayed erythema, which may not begin for several hours and peaks at 48–72 hours. The inflammation is followed, over several days to weeks, by repair which is manifested by increased melanization of the epidermis and thickening of the stratum corneum. The mechanisms of therapy are not known. In the treatment of vitiligo, it has been suggested that melanocytes in the hair follicle are stimulated to move up the follicle and to repopulate the epidermis. In the treatment of psoriasis, the mechanism is most often assumed to be DNA photodamage and resulting decrease in cell proliferation but other vascular, leukocyte, or cell regulatory mechanisms may also be playing some role. Psoriasis is a hyperproliferative disorder and other agents known to be therapeutic for psoriasis are known to inhibit DNA synthesis. The most commonly reported side effect of methoxsalen alone is nausea, which occurs with approximately 10% of all patients. This effect may be minimized or avoided by instructing the patient to take methoxsalen with milk or food, or to divide the dose into two portions, taken approximately one-half hour apart. Other effects include nervousness, insomnia, and psychological depression.

Class (Stereo):
CHEMICAL (RACEMIC)



Phenoxybenzamin (marketed under the trade name Dibenzyline) is an alpha-adrenergic antagonist with long duration of action. It is indicated in the treatment of pheochromocytoma, to control episodes of hypertension and sweating. If tachycardia is excessive, it may be necessary to use a beta-blocking agent concomitantly. Phenoxybenzamine produces its therapeutic actions by blocking alpha receptors, leading to a muscle relaxation and a widening of the blood vessels. This widening of the blood vessels results in a lowering of blood pressure. Phenoxybenzamine hydrochloride can produce and maintain “chemical sympathectomy” by oral administration. It increases blood flow to the skin, mucosa and abdominal viscera, and lowers both supine and erect blood pressures. It has no effect on the parasympathetic system. Twenty to percent of orally administered phenoxybenzamine appears to be absorbed in the active form. The half-life of orally administered phenoxybenzamine hydrochloride is not known; however, the half-life of intravenously administered drug is approximately 24 hours. Demonstrable effects with intravenous administration persist for at least 3 to 4 days, and the effects of daily administration are cumulative for nearly a week. The following adverse reactions have been observed, but there are insufficient data to support an estimate of their frequency: Postural hypotension, tachycardia, inhibition of ejaculation, nasal congestion, and miosis. These so-called “side effects” are actually evidence of adrenergic blockade and vary according to the degree of blockade. Miscellaneous: Gastrointestinal irritation, drowsiness, fatigue.
Acetazolamide, usually sold under the trade name Diamox in some countries. DIAMOX is used for adjunctive treatment of: chronic simple (open-angle) glaucoma, secondary glaucoma, and preoperatively in acute angle-closure glaucoma where delay of surgery is desired in order to lower intraocular pressure. DIAMOX is also indicated for the prevention or amelioration of symptoms associated with acute mountain sickness despite gradual ascent. DIAMOX is an enzyme inhibitor that acts specifically on carbonic anhydrase, the enzyme that catalyzes the reversible reaction involving the hydration of carbon dioxide and the dehydration of carbonic acid. In the eye, this inhibitory action of acetazolamide decreases the secretion of aqueous humor and results in a drop in intraocular pressure, a reaction considered desirable in cases of glaucoma and even in certain non-glaucomatous conditions. Evidence seems to indicate that DIAMOX has utility as an adjuvant in treatment of certain dysfunctions of the central nervous system (e.g., epilepsy). The diuretic effect of DIAMOX is due to its action in the kidney on the reversible reaction involving hydration of carbon dioxide and dehydration of carbonic acid. The result is renal loss of HCO3 ion, which carries out sodium, water, and potassium. It is on the World Health Organization's List of Essential Medicines, a list of the most important medications needed in a basic health system.