U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 1911 - 1920 of 2333 results

Caffeine is a methylxanthine alkaloid found in the seeds, nuts, or leaves of a number of plants native to South America and East Asia that is structurally related to adenosine and acts primarily as an adenosine receptor antagonist with psychotropic and anti-inflammatory activities. Upon ingestion, caffeine binds to adenosine receptors in the central nervous system (CNS), which inhibits adenosine binding. This inhibits the adenosine-mediated downregulation of CNS activity; thus, stimulating the activity of the medullary, vagal, vasomotor, and respiratory centers in the brain. The anti-inflammatory effects of caffeine are due the nonselective competitive inhibition of phosphodiesterases. Caffeine is used by mouth or rectally in combination with painkillers (such as aspirin and acetaminophen) and a chemical called ergotamine for treating migraineheadaches. It is also used with painkillers for simple headaches and preventing and treating headaches after epidural anesthesia. Caffeine creams are applied to the skin to reduce redness and itching in dermatitis. Healthcare providers sometimes give caffeine intravenously (by IV) for headache after epidural anesthesia, breathing problems in newborns, and to increase urine flow. In foods, caffeine is used as an ingredient in soft drinks, energy drinks, and other beverages.

Class (Stereo):
CHEMICAL (ACHIRAL)

Isopropanolamine (1-Amino-2-propanol) is a colorless to yellowish liquid with an amine-like odor. It is miscible in water. Intermediate used in the production of dyes, lubrification oils, corrosion inhibitor, detergents, cutting fluids.
Status:
US Approved OTC
Source:
21 CFR 331.11(m) antacid:tartrate-containing tartrate (acid or salt)
Source URL:
First marketed in 1921
Source:
Tartaric Acid U.S.P.
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)

Conditions:

Tartaric acid is found in many plants such as grapes, tamarinds, pineapples, mulberries and so on. Wine lees (called mud in the US), the sediment collected during the fermentation of grapes, contains potassium bitartrate (potassium hydrogen tartrate) as its major component. L-(+)-tartaric acid is an enantiomer of tartaric acid. Twenty five years before the tetrahedral structure for carbon was proposed in 1874 to explain the optical activity and other properties of organic compounds, Louis Pasteur discovered the existence of enantiomerism in tartaric acid. L-(+)-tartaric acid is widely used in food and beverage as acidity regulator with E number E334.
Status:
US Approved OTC
Source:
21 CFR 331.11(m) antacid:tartrate-containing tartrate (acid or salt)
Source URL:
First marketed in 1921
Source:
Tartaric Acid U.S.P.
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)

Conditions:

Tartaric acid is found in many plants such as grapes, tamarinds, pineapples, mulberries and so on. Wine lees (called mud in the US), the sediment collected during the fermentation of grapes, contains potassium bitartrate (potassium hydrogen tartrate) as its major component. L-(+)-tartaric acid is an enantiomer of tartaric acid. Twenty five years before the tetrahedral structure for carbon was proposed in 1874 to explain the optical activity and other properties of organic compounds, Louis Pasteur discovered the existence of enantiomerism in tartaric acid. L-(+)-tartaric acid is widely used in food and beverage as acidity regulator with E number E334.
Status:
US Approved OTC
Source:
21 CFR 341.14(a)(2)(ii) cough/cold:antitussive codeine phosphate
Source URL:
First marketed in 1921
Source:
Codeine Sulphate U.S.P.
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)


Conditions:

Codeine is an opiate used to manage mild to moderate pain severe enough to require an opioid. Codeine is a selective agonist for the mu opioid receptor and has an affinity to delta and kappa-opioid receptors. In some countries, this drug is regulated under various narcotic control laws, because its chronic use can cause physical dependence. In others, it is available without a medical prescription in combination with paracetamol.
Status:
US Approved OTC
Source:
21 CFR 341.14(a)(2)(ii) cough/cold:antitussive codeine phosphate
Source URL:
First marketed in 1921
Source:
Codeine Sulphate U.S.P.
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)


Conditions:

Codeine is an opiate used to manage mild to moderate pain severe enough to require an opioid. Codeine is a selective agonist for the mu opioid receptor and has an affinity to delta and kappa-opioid receptors. In some countries, this drug is regulated under various narcotic control laws, because its chronic use can cause physical dependence. In others, it is available without a medical prescription in combination with paracetamol.
Status:
US Approved OTC
Source:
21 CFR 341.14(a)(2)(ii) cough/cold:antitussive codeine phosphate
Source URL:
First marketed in 1921
Source:
Codeine Sulphate U.S.P.
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)


Conditions:

Codeine is an opiate used to manage mild to moderate pain severe enough to require an opioid. Codeine is a selective agonist for the mu opioid receptor and has an affinity to delta and kappa-opioid receptors. In some countries, this drug is regulated under various narcotic control laws, because its chronic use can cause physical dependence. In others, it is available without a medical prescription in combination with paracetamol.
Status:
US Approved OTC
Source:
21 CFR 331.11(m) antacid:tartrate-containing tartrate (acid or salt)
Source URL:
First marketed in 1921
Source:
Tartaric Acid U.S.P.
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)

Conditions:

Tartaric acid is found in many plants such as grapes, tamarinds, pineapples, mulberries and so on. Wine lees (called mud in the US), the sediment collected during the fermentation of grapes, contains potassium bitartrate (potassium hydrogen tartrate) as its major component. L-(+)-tartaric acid is an enantiomer of tartaric acid. Twenty five years before the tetrahedral structure for carbon was proposed in 1874 to explain the optical activity and other properties of organic compounds, Louis Pasteur discovered the existence of enantiomerism in tartaric acid. L-(+)-tartaric acid is widely used in food and beverage as acidity regulator with E number E334.
Status:
US Approved OTC
Source:
21 CFR 343.13(b) internal analgesic:rheumatologic aspirin (buffered)
Source URL:
First marketed in 1899
Source:
Aspirin by Friedr. Bayer & Co., Elberfeld, Germany
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Aspirin is a nonsteroidal anti-inflammatory drug. Aspirin is unique in this class of drugs because it irreversibly inhibits both COX-1 and COX-2 activity by acetylating a serine residue (Ser529 and Ser516, respectively) positioned in the arachidonic acid-binding channel, thus inhibiting the synthesis of prostaglandins and reducing the inflammatory response. The drug is used either alone or in combination with other compounds for the treatment of pain, headache, as well as for reducing the risk of stroke and heart attacks in patients with brain ischemia and cardiovascular diseases.
Status:
US Approved OTC
Source:
21 CFR 343.13(b) internal analgesic:rheumatologic aspirin (buffered)
Source URL:
First marketed in 1899
Source:
Aspirin by Friedr. Bayer & Co., Elberfeld, Germany
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Aspirin is a nonsteroidal anti-inflammatory drug. Aspirin is unique in this class of drugs because it irreversibly inhibits both COX-1 and COX-2 activity by acetylating a serine residue (Ser529 and Ser516, respectively) positioned in the arachidonic acid-binding channel, thus inhibiting the synthesis of prostaglandins and reducing the inflammatory response. The drug is used either alone or in combination with other compounds for the treatment of pain, headache, as well as for reducing the risk of stroke and heart attacks in patients with brain ischemia and cardiovascular diseases.

Showing 1911 - 1920 of 2333 results