U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 3551 - 3560 of 4027 results

Status:
US Previously Marketed
Source:
Serc by Unimed More
(1966)
Source URL:
First approved in 1966
Source:
Serc by Unimed More
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Betahistine is an orally administered, centrally acting histamine H1 receptor agonist with partial H3 antagonistic activity. It is proposed that betahistine may reduce peripherally the asymmetric functioning of the sensory vestibular organs in addition to increasing vestibulocochlear blood flow by antagonising local H3 heteroreceptors. Betahistine acts centrally by enhancing histamine synthesis within tuberomammillary nuclei of the posterior hypothalamus and histamine release within vestibular nuclei through antagonism of H3 autoreceptors. This mechanism, together with less specific effects of betahistine on alertness regulation through cerebral H1 receptors, should promote and facilitate central vestibular compensation. Betahistine is used to treat the symptoms associated with Ménière's disease, a condition of the inner ear which causes, vertigo (dizziness), tinnitus (ringing in the ears), hearing loss.
Status:
US Previously Marketed
Source:
Serc by Unimed More
(1966)
Source URL:
First approved in 1966
Source:
Serc by Unimed More
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Betahistine is an orally administered, centrally acting histamine H1 receptor agonist with partial H3 antagonistic activity. It is proposed that betahistine may reduce peripherally the asymmetric functioning of the sensory vestibular organs in addition to increasing vestibulocochlear blood flow by antagonising local H3 heteroreceptors. Betahistine acts centrally by enhancing histamine synthesis within tuberomammillary nuclei of the posterior hypothalamus and histamine release within vestibular nuclei through antagonism of H3 autoreceptors. This mechanism, together with less specific effects of betahistine on alertness regulation through cerebral H1 receptors, should promote and facilitate central vestibular compensation. Betahistine is used to treat the symptoms associated with Ménière's disease, a condition of the inner ear which causes, vertigo (dizziness), tinnitus (ringing in the ears), hearing loss.
Status:
US Previously Marketed
First approved in 1966

Class (Stereo):
CHEMICAL (ABSOLUTE)



Levomepromazine (also known as methotrimeprazine) is a phenothiazine neuroleptic drug. It is sold in many countries under the generic name (levomepromazine) or under brand names such as Nozinan, Detenler and many more. Levomepromazine is an antipsychotic drug is commonly used as an antiemetic to alleviate nausea and vomiting in palliative care settings particularly in terminal illness. Levomepromazine is a phenothiazine with pharmacological activity similar to that of both chlorpromazine and promethazine. It has the histamine-antagonist properties of the antihistamines together with central nervous system effects resembling those of chlorpromazine. Levomepromazine's antipsychotic effect is largely due to its antagonism of dopamine receptors in the brain. In addition, it can block 5HT2 receptors and some others, like histamine, serotonin.
Status:
US Previously Marketed
Source:
Thioguanine by Burroughs Wellcome
(1966)
Source URL:
First approved in 1966
Source:
Thioguanine by Burroughs Wellcome
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Thioguanine is an antineoplastic anti-metabolite used in the treatment of several forms of leukemia including acute nonlymphocytic leukemia. Anti-metabolites masquerade as purine or pyrimidine - which become the building blocks of DNA. They prevent these substances becoming incorporated in to DNA during the "S" phase (of the cell cycle), stopping normal development and division. Thioguanine was first synthesized and entered into clinical trial more than 30 years ago. It is a 6-thiopurine analogue of the naturally occurring purine bases hypoxanthine and guanine. Intracellular activation results in incorporation into DNA as a false purine base. An additional cytotoxic effect is related to its incorporation into RNA. Thioguanine is cross-resistant with mercaptopurine. Cytotoxicity is cell cycle phase-specific (S-phase). Thioguanine competes with hypoxanthine and guanine for the enzyme hypoxanthine-guanine phosphoribosyltransferase (HGPRTase) and is itself converted to 6-thioguanilyic acid (TGMP), which reaches high intracellular concentrations at therapeutic doses. TGMP interferes with the synthesis of guanine nucleotides by its inhibition of purine biosynthesis by pseudofeedback inhibition of glutamine-5-phosphoribosylpyrophosphate amidotransferase, the first enzyme unique to the de novo pathway of purine ribonucleotide synthesis. TGMP also inhibits the conversion of inosinic acid (IMP) to xanthylic acid (XMP) by competition for the enzyme IMP dehydrogenase. Thioguanine nucleotides are incorporated into both the DNA and the RNA by phosphodiester linkages, and some studies have shown that incorporation of such false bases contributes to the cytotoxicity of thioguanine. Its tumor inhibitory properties may be due to one or more of its effects on feedback inhibition of de novo purine synthesis; inhibition of purine nucleotide interconversions; or incorporation into the DNA and RNA. The overall result of its action is a sequential blockade of the utilization and synthesis of the purine nucleotides. Thioguanine is used for remission induction and remission consolidation treatment of acute nonlymphocytic leukemias. It is marketed under the trade name Lanvis and Tabloid among others.
Status:
US Previously Marketed
Source:
Serc by Unimed More
(1966)
Source URL:
First approved in 1966
Source:
Serc by Unimed More
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Betahistine is an orally administered, centrally acting histamine H1 receptor agonist with partial H3 antagonistic activity. It is proposed that betahistine may reduce peripherally the asymmetric functioning of the sensory vestibular organs in addition to increasing vestibulocochlear blood flow by antagonising local H3 heteroreceptors. Betahistine acts centrally by enhancing histamine synthesis within tuberomammillary nuclei of the posterior hypothalamus and histamine release within vestibular nuclei through antagonism of H3 autoreceptors. This mechanism, together with less specific effects of betahistine on alertness regulation through cerebral H1 receptors, should promote and facilitate central vestibular compensation. Betahistine is used to treat the symptoms associated with Ménière's disease, a condition of the inner ear which causes, vertigo (dizziness), tinnitus (ringing in the ears), hearing loss.
Status:
US Previously Marketed
First approved in 1966

Class (Stereo):
CHEMICAL (ABSOLUTE)



Levomepromazine (also known as methotrimeprazine) is a phenothiazine neuroleptic drug. It is sold in many countries under the generic name (levomepromazine) or under brand names such as Nozinan, Detenler and many more. Levomepromazine is an antipsychotic drug is commonly used as an antiemetic to alleviate nausea and vomiting in palliative care settings particularly in terminal illness. Levomepromazine is a phenothiazine with pharmacological activity similar to that of both chlorpromazine and promethazine. It has the histamine-antagonist properties of the antihistamines together with central nervous system effects resembling those of chlorpromazine. Levomepromazine's antipsychotic effect is largely due to its antagonism of dopamine receptors in the brain. In addition, it can block 5HT2 receptors and some others, like histamine, serotonin.
Status:
US Previously Marketed
First approved in 1966

Class (Stereo):
CHEMICAL (ABSOLUTE)



Levomepromazine (also known as methotrimeprazine) is a phenothiazine neuroleptic drug. It is sold in many countries under the generic name (levomepromazine) or under brand names such as Nozinan, Detenler and many more. Levomepromazine is an antipsychotic drug is commonly used as an antiemetic to alleviate nausea and vomiting in palliative care settings particularly in terminal illness. Levomepromazine is a phenothiazine with pharmacological activity similar to that of both chlorpromazine and promethazine. It has the histamine-antagonist properties of the antihistamines together with central nervous system effects resembling those of chlorpromazine. Levomepromazine's antipsychotic effect is largely due to its antagonism of dopamine receptors in the brain. In addition, it can block 5HT2 receptors and some others, like histamine, serotonin.
Status:
US Previously Marketed
Source:
Serc by Unimed More
(1966)
Source URL:
First approved in 1966
Source:
Serc by Unimed More
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Betahistine is an orally administered, centrally acting histamine H1 receptor agonist with partial H3 antagonistic activity. It is proposed that betahistine may reduce peripherally the asymmetric functioning of the sensory vestibular organs in addition to increasing vestibulocochlear blood flow by antagonising local H3 heteroreceptors. Betahistine acts centrally by enhancing histamine synthesis within tuberomammillary nuclei of the posterior hypothalamus and histamine release within vestibular nuclei through antagonism of H3 autoreceptors. This mechanism, together with less specific effects of betahistine on alertness regulation through cerebral H1 receptors, should promote and facilitate central vestibular compensation. Betahistine is used to treat the symptoms associated with Ménière's disease, a condition of the inner ear which causes, vertigo (dizziness), tinnitus (ringing in the ears), hearing loss.
Status:
US Previously Marketed
First approved in 1965

Class (Stereo):
CHEMICAL (UNKNOWN)



Chlorphenesin carbamate (Maolate, Musil) is a centrally acting muscle relaxant used to treat muscle pain and spasms. Сhlorphenesin acts in the central nervous system (CNS) rather than directly on skeletal muscle. It also has antifungal and some antibacterial properties. The major adverse effects are drowsiness and dizziness.
Status:
US Previously Marketed
First approved in 1965

Class (Stereo):
CHEMICAL (UNKNOWN)



Chlorphenesin carbamate (Maolate, Musil) is a centrally acting muscle relaxant used to treat muscle pain and spasms. Сhlorphenesin acts in the central nervous system (CNS) rather than directly on skeletal muscle. It also has antifungal and some antibacterial properties. The major adverse effects are drowsiness and dizziness.

Showing 3551 - 3560 of 4027 results