{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
US Approved Rx
(2009)
Source:
NDA022314
(2009)
Source URL:
First approved in 1987
Source:
NDA019787
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Amlodipine is a dihydropyridine calcium antagonist (calcium ion antagonist or slow-channel blocker) that inhibits the transmembrane influx of calcium ions into vascular smooth muscle and cardiac muscle. Experimental data suggest that amlodipine binds to both dihydropyridine and nondihydropyridine binding sites. The contractile processes of cardiac muscle and vascular smooth muscle are dependent upon the movement of extracellular calcium ions into these cells through specific ion channels. Amlodipine inhibits calcium ion influx across cell membranes selectively, with a greater effect on vascular mooth muscle cells than on cardiac muscle cells. Amlodipine is indicated for the treatment of hypertension and coronary artery disease.
Status:
US Approved Rx
(1985)
Source:
NDA020145
(1985)
Source URL:
First marketed in 1921
Source:
Spirit of Glyceryl Trinitrate U.S.P.
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Pentaerythritol tetranitrate is an organic nitrate that has been used for the treatment of angina pectoris. Upon administration, the drug undergoes exstensive metabolism to NO which causes vasodilation and the relaxation of smooth muscle cells. The compound belongs to a familiy of explosive substances and may be used accordingly.
Status:
US Previously Marketed
Source:
21 CFR 310.528(a) aphrodisiac yohimbinum
Source URL:
First approved in 2015
Source:
NADA140866
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Yohimbine is a plant alkaloid with alpha-2-adrenergic blocking activity. Yohimbine has been used as a mydriatic and in the treatment of impotence. The exact mechanism for its use in impotence has not been fully elucidated. Yohimbine exerts antagonist actions at halpha(2A)-AR, h5-HT(1B), h5-HT(1D), and hD(2) sites, partial agonist actions at h5-HT(1A) sites. Yohimbine-mediated norepinephrine release at the level of the corporeal tissues may also be involved. In addition, beneficial effects may involve other neurotransmitters such as dopamine and serotonin and cholinergic receptors. Yohimbine has a mild anti-diuretic action, probably via stimulation of hypothalmic center and release of posterior pituitary hormone. Reportedly yohimbine exerts no significant influence on cardiac stimulation and other effects mediated by (beta)-adrenergic receptors. Its effect on blood pressure, if any, would be to lower it; however, no adequate studies are at hand to quantitate this effect in terms of Yohimbine dosage. Side effect of Yohimbine include anxiety, tremor, palpitations, diarrhea, and supine hypertension.
Status:
Possibly Marketed Outside US
First approved in 2010
Source:
21 CFR 352
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Behenic acid is a saturated fatty acid that is derived from the oil extracts of plants and used as a component of conditioning agents. Behenic acid is also a part of a novel complex of lipophilic ingredients developed for the treatment of dry skin. The properties of behenic acid were studied in comparison to others fatty acids and it was found that behenic acid does not inhibit the UDP-glucuronosyltransferase (UGT) 1A1 enzyme. The high levels of behenic acid in patients with low-grade glial tumors is an important indicator of the persistence of tissue integrity and tissue resistance. Therefore, behenic acid levels can be a prognostic factor in glial tumors.
Status:
US Approved Rx
(2009)
Source:
NDA022314
(2009)
Source URL:
First approved in 1987
Source:
NDA019787
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Amlodipine is a dihydropyridine calcium antagonist (calcium ion antagonist or slow-channel blocker) that inhibits the transmembrane influx of calcium ions into vascular smooth muscle and cardiac muscle. Experimental data suggest that amlodipine binds to both dihydropyridine and nondihydropyridine binding sites. The contractile processes of cardiac muscle and vascular smooth muscle are dependent upon the movement of extracellular calcium ions into these cells through specific ion channels. Amlodipine inhibits calcium ion influx across cell membranes selectively, with a greater effect on vascular mooth muscle cells than on cardiac muscle cells. Amlodipine is indicated for the treatment of hypertension and coronary artery disease.
Status:
US Approved Rx
(2009)
Source:
NDA022314
(2009)
Source URL:
First approved in 1987
Source:
NDA019787
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Amlodipine is a dihydropyridine calcium antagonist (calcium ion antagonist or slow-channel blocker) that inhibits the transmembrane influx of calcium ions into vascular smooth muscle and cardiac muscle. Experimental data suggest that amlodipine binds to both dihydropyridine and nondihydropyridine binding sites. The contractile processes of cardiac muscle and vascular smooth muscle are dependent upon the movement of extracellular calcium ions into these cells through specific ion channels. Amlodipine inhibits calcium ion influx across cell membranes selectively, with a greater effect on vascular mooth muscle cells than on cardiac muscle cells. Amlodipine is indicated for the treatment of hypertension and coronary artery disease.
Status:
US Approved Rx
(2009)
Source:
NDA022314
(2009)
Source URL:
First approved in 1987
Source:
NDA019787
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Amlodipine is a dihydropyridine calcium antagonist (calcium ion antagonist or slow-channel blocker) that inhibits the transmembrane influx of calcium ions into vascular smooth muscle and cardiac muscle. Experimental data suggest that amlodipine binds to both dihydropyridine and nondihydropyridine binding sites. The contractile processes of cardiac muscle and vascular smooth muscle are dependent upon the movement of extracellular calcium ions into these cells through specific ion channels. Amlodipine inhibits calcium ion influx across cell membranes selectively, with a greater effect on vascular mooth muscle cells than on cardiac muscle cells. Amlodipine is indicated for the treatment of hypertension and coronary artery disease.
Status:
US Approved Rx
(2009)
Source:
NDA022314
(2009)
Source URL:
First approved in 1987
Source:
NDA019787
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Amlodipine is a dihydropyridine calcium antagonist (calcium ion antagonist or slow-channel blocker) that inhibits the transmembrane influx of calcium ions into vascular smooth muscle and cardiac muscle. Experimental data suggest that amlodipine binds to both dihydropyridine and nondihydropyridine binding sites. The contractile processes of cardiac muscle and vascular smooth muscle are dependent upon the movement of extracellular calcium ions into these cells through specific ion channels. Amlodipine inhibits calcium ion influx across cell membranes selectively, with a greater effect on vascular mooth muscle cells than on cardiac muscle cells. Amlodipine is indicated for the treatment of hypertension and coronary artery disease.
Status:
US Approved Rx
(2009)
Source:
NDA022314
(2009)
Source URL:
First approved in 1987
Source:
NDA019787
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Amlodipine is a dihydropyridine calcium antagonist (calcium ion antagonist or slow-channel blocker) that inhibits the transmembrane influx of calcium ions into vascular smooth muscle and cardiac muscle. Experimental data suggest that amlodipine binds to both dihydropyridine and nondihydropyridine binding sites. The contractile processes of cardiac muscle and vascular smooth muscle are dependent upon the movement of extracellular calcium ions into these cells through specific ion channels. Amlodipine inhibits calcium ion influx across cell membranes selectively, with a greater effect on vascular mooth muscle cells than on cardiac muscle cells. Amlodipine is indicated for the treatment of hypertension and coronary artery disease.
Status:
US Approved Rx
(2009)
Source:
NDA022314
(2009)
Source URL:
First approved in 1987
Source:
NDA019787
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Amlodipine is a dihydropyridine calcium antagonist (calcium ion antagonist or slow-channel blocker) that inhibits the transmembrane influx of calcium ions into vascular smooth muscle and cardiac muscle. Experimental data suggest that amlodipine binds to both dihydropyridine and nondihydropyridine binding sites. The contractile processes of cardiac muscle and vascular smooth muscle are dependent upon the movement of extracellular calcium ions into these cells through specific ion channels. Amlodipine inhibits calcium ion influx across cell membranes selectively, with a greater effect on vascular mooth muscle cells than on cardiac muscle cells. Amlodipine is indicated for the treatment of hypertension and coronary artery disease.