{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
US Approved Rx
(2008)
Source:
ANDA078902
(2008)
Source URL:
First approved in 1992
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Paroxetine, also known by the trade names Paxil and Seroxat. PAXIL (paroxetine hydrochloride) is an orally administered psychotropic drug. It is the hydrochloride salt of a phenylpiperidine compound identified chemically as (-)-trans-4R-(4'fluorophenyl)-3S-[(3',4'-methylenedioxyphenoxy) methyl] piperidine hydrochloride hemihydrate. It is used to treat major depressive disorder, obsessive-compulsive disorder, social anxiety disorder, panic disorder, posttraumatic stress disorder, generalized anxiety disorder and premenstrual dysphoric disorder. Paroxetine is a potent and highly selective inhibitor of neuronal serotonin reuptake. Paroxetine likely inhibits the reuptake of serotonin at the neuronal membrane, enhances serotonergic neurotransmission by reducing turnover of the neurotransmitter, therefore it prolongs its activity at synaptic receptor sites and potentiates 5-HT in the CNS; paroxetine is more potent than both sertraline and fluoxetine in its ability to inhibit 5-HT reuptake. Compared to the tricyclic antidepressants, SSRIs have dramatically decreased binding to histamine, acetylcholine, and norepinephrine receptors. The mechanism of action for the treatment of vasomotor symptoms is unknown. Paroxetine, a phenylpiperidine derivative, was originally developed in 1975 by Jorgen Buus-Lassen and associates working in a small Danish company Ferrosan. Paroxetine was the second SSRI synthesized by Buus-Lassen In 1975.
Status:
US Approved Rx
(2008)
Source:
ANDA078191
(2008)
Source URL:
First approved in 1991
Source:
NDA019901
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Ramipril (sold under the brand name Altace ) is a prodrug belonging to the angiotensin-converting enzyme (ACE) inhibitors. It is metabolized to ramiprilat in the liver and, to a lesser extent, kidneys. Ramiprilat is a potent, competitive inhibitor of ACE, the enzyme responsible for the conversion of angiotensin I (ATI) to angiotensin II (ATII). ATII regulates blood pressure and is a key component of the renin-angiotensin-aldosterone system (RAAS). Ramipril is indicated for the treatment of hypertension, to lower blood pressure; also used to reduce the risk of myocardial infarction, stroke, or death from cardiovascular causes; in addition, this drug is used to reduce the rate of death, myocardial infarction and stroke in individuals at high risk of cardiovascular events.
Status:
US Approved Rx
(2002)
Source:
ANDA075713
(2002)
Source URL:
First approved in 1989
Source:
NDA019758
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Clozapine was discovered in 1958 by an anesthetist and now it is used for the treatment of schizophrenia. Although the exact mechanism of its action is unknown, the effect of clozapine on schizophrenia is associated with inhibition of dopamine D2 and serotonin 2A receptors.
Status:
US Approved Rx
(2020)
Source:
ANDA212041
(2020)
Source URL:
First approved in 1987
Source:
PRINIVIL by MERCK
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Lisinopril is a potent, competitive inhibitor of angiotensin-converting enzyme (ACE). Lisinopril is marketed under the brand name ZESTRIL. ZESTRIL is indicated for the treatment of hypertension. It may be used alone as initial therapy
or concomitantly with other classes of antihypertensive agents. It is also indicated as adjunctive therapy in the management of heart failure in patients who
are not responding adequately to diuretics and digitalis. Lisinopril inhibits angiotensin-converting enzyme (ACE) in human subjects and animals. ACE
is a peptidyl dipeptidase that catalyzes the conversion of angiotensin I to the vasoconstrictor
substance, angiotensin II. Angiotensin II also stimulates aldosterone secretion by the adrenal
cortex. The beneficial effects of lisinopril in hypertension and heart failure appear to result
primarily from suppression of the renin-angiotensin-aldosterone system. Inhibition of ACE
results in decreased plasma angiotensin II which leads to decreased vasopressor activity and to
decreased aldosterone secretion. While the mechanism through which ZESTRIL lowers blood pressure is believed to be primarily
suppression of the renin-angiotensin-aldosterone system, ZESTRIL is antihypertensive even in
patients with low-renin hypertension.
Status:
US Approved Rx
(2000)
Source:
ANDA075479
(2000)
Source URL:
First approved in 1985
Source:
NDA018998
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Enalapril (marketed as Vasotec in the US, Enaladex and Renitec in some other countries) is an angiotensin-converting-enzyme (ACE) inhibitor used in the treatment of hypertension, diabetic nephropathy, and some types of chronic heart failure. Enalapril, after hydrolysis to enalaprilat, inhibits angiotensin-converting enzyme (ACE) in human subjects and animals. ACE is a peptidyl dipeptidase that catalyzes the conversion of angiotensin I to the vasoconstrictor substance, angiotensin II. Angiotensin II also stimulates aldosterone secretion by the adrenal cortex. The beneficial effects of enalapril in hypertension and heart failure appear to result primarily from suppression of the renin-angiotensin-aldosterone system. Inhibition of ACE results in decreased plasma angiotensin II, which leads to decreased vasopressor activity and to decrease aldosterone secretion.
Status:
US Approved Rx
(2000)
Source:
ANDA075479
(2000)
Source URL:
First approved in 1985
Source:
NDA018998
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Enalapril (marketed as Vasotec in the US, Enaladex and Renitec in some other countries) is an angiotensin-converting-enzyme (ACE) inhibitor used in the treatment of hypertension, diabetic nephropathy, and some types of chronic heart failure. Enalapril, after hydrolysis to enalaprilat, inhibits angiotensin-converting enzyme (ACE) in human subjects and animals. ACE is a peptidyl dipeptidase that catalyzes the conversion of angiotensin I to the vasoconstrictor substance, angiotensin II. Angiotensin II also stimulates aldosterone secretion by the adrenal cortex. The beneficial effects of enalapril in hypertension and heart failure appear to result primarily from suppression of the renin-angiotensin-aldosterone system. Inhibition of ACE results in decreased plasma angiotensin II, which leads to decreased vasopressor activity and to decrease aldosterone secretion.
Status:
US Approved Rx
(2000)
Source:
ANDA075479
(2000)
Source URL:
First approved in 1985
Source:
NDA018998
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Enalapril (marketed as Vasotec in the US, Enaladex and Renitec in some other countries) is an angiotensin-converting-enzyme (ACE) inhibitor used in the treatment of hypertension, diabetic nephropathy, and some types of chronic heart failure. Enalapril, after hydrolysis to enalaprilat, inhibits angiotensin-converting enzyme (ACE) in human subjects and animals. ACE is a peptidyl dipeptidase that catalyzes the conversion of angiotensin I to the vasoconstrictor substance, angiotensin II. Angiotensin II also stimulates aldosterone secretion by the adrenal cortex. The beneficial effects of enalapril in hypertension and heart failure appear to result primarily from suppression of the renin-angiotensin-aldosterone system. Inhibition of ACE results in decreased plasma angiotensin II, which leads to decreased vasopressor activity and to decrease aldosterone secretion.
Status:
US Approved Rx
(2000)
Source:
ANDA075479
(2000)
Source URL:
First approved in 1985
Source:
NDA018998
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Enalapril (marketed as Vasotec in the US, Enaladex and Renitec in some other countries) is an angiotensin-converting-enzyme (ACE) inhibitor used in the treatment of hypertension, diabetic nephropathy, and some types of chronic heart failure. Enalapril, after hydrolysis to enalaprilat, inhibits angiotensin-converting enzyme (ACE) in human subjects and animals. ACE is a peptidyl dipeptidase that catalyzes the conversion of angiotensin I to the vasoconstrictor substance, angiotensin II. Angiotensin II also stimulates aldosterone secretion by the adrenal cortex. The beneficial effects of enalapril in hypertension and heart failure appear to result primarily from suppression of the renin-angiotensin-aldosterone system. Inhibition of ACE results in decreased plasma angiotensin II, which leads to decreased vasopressor activity and to decrease aldosterone secretion.
Status:
US Approved Rx
(2017)
Source:
ANDA207905
(2017)
Source URL:
First approved in 1984
Source:
REVIA by TEVA WOMENS
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Naltrexone is marketed as its hydrochloride salt, naltrexone hydrochloride, under the trade names Revia and Depade. A once-monthly extended-release injectable formulation is marketed under the trade name Vivitrol. VIVITROL is indicated for the treatment of alcohol dependence in patients who are able to abstain from alcohol in an outpatient setting prior to initiation of treatment with VIVITROL. VIVITROL is indicated for the prevention of relapse to opioid dependence, following opioid detoxification. Naltrexone is a pure opiate antagonist and has little or no agonist activity. The mechanism of action of naltrexone in alcoholism is not understood; however, involvement of the endogenous opioid system is suggested by preclinical data. Naltrexone is thought to act as a competitive antagonist at mc, κ, and δ receptors in the CNS, with the highest affinity for the μ receptor. Naltrexone competitively binds to such receptors and may block the effects of endogenous opioids. This leads to the antagonization of most of the subjective and objective effects of opiates, including respiratory depression, miosis, euphoria, and drug craving. The major metabolite of naltrexone, 6-β-naltrexol, is also an opiate antagonist and may contribute to the antagonistic activity of the drug. Low dose naltrexone is an “off label” use of naltrexone. Normal naltrexone usage to break addictions is 50mg – 100mg. Usage of low dose naltrexone ranges in the area of 3 mg – 4.5 mg dosing and is prescribed in an oral pill form and is quite inexpensive. For people with multiple sclerosis, the dosage of LDN ranges from 1.5 to 4.5 ml per day.
Status:
US Approved Rx
(2017)
Source:
ANDA207905
(2017)
Source URL:
First approved in 1984
Source:
REVIA by TEVA WOMENS
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Naltrexone is marketed as its hydrochloride salt, naltrexone hydrochloride, under the trade names Revia and Depade. A once-monthly extended-release injectable formulation is marketed under the trade name Vivitrol. VIVITROL is indicated for the treatment of alcohol dependence in patients who are able to abstain from alcohol in an outpatient setting prior to initiation of treatment with VIVITROL. VIVITROL is indicated for the prevention of relapse to opioid dependence, following opioid detoxification. Naltrexone is a pure opiate antagonist and has little or no agonist activity. The mechanism of action of naltrexone in alcoholism is not understood; however, involvement of the endogenous opioid system is suggested by preclinical data. Naltrexone is thought to act as a competitive antagonist at mc, κ, and δ receptors in the CNS, with the highest affinity for the μ receptor. Naltrexone competitively binds to such receptors and may block the effects of endogenous opioids. This leads to the antagonization of most of the subjective and objective effects of opiates, including respiratory depression, miosis, euphoria, and drug craving. The major metabolite of naltrexone, 6-β-naltrexol, is also an opiate antagonist and may contribute to the antagonistic activity of the drug. Low dose naltrexone is an “off label” use of naltrexone. Normal naltrexone usage to break addictions is 50mg – 100mg. Usage of low dose naltrexone ranges in the area of 3 mg – 4.5 mg dosing and is prescribed in an oral pill form and is quite inexpensive. For people with multiple sclerosis, the dosage of LDN ranges from 1.5 to 4.5 ml per day.