U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS
This repository is under review for potential modification in compliance with Administration directives.

Details

Stereochemistry ABSOLUTE
Molecular Formula C20H28N2O5.C4H4O4
Molecular Weight 492.5189
Optical Activity UNSPECIFIED
Defined Stereocenters 3 / 3
E/Z Centers 1
Charge 0

SHOW SMILES / InChI
Structure of ENALAPRIL MALEATE

SMILES

OC(=O)\C=C/C(O)=O.CCOC(=O)[C@H](CCC1=CC=CC=C1)N[C@@H](C)C(=O)N2CCC[C@H]2C(O)=O

InChI

InChIKey=OYFJQPXVCSSHAI-QFPUQLAESA-N
InChI=1S/C20H28N2O5.C4H4O4/c1-3-27-20(26)16(12-11-15-8-5-4-6-9-15)21-14(2)18(23)22-13-7-10-17(22)19(24)25;5-3(6)1-2-4(7)8/h4-6,8-9,14,16-17,21H,3,7,10-13H2,1-2H3,(H,24,25);1-2H,(H,5,6)(H,7,8)/b;2-1-/t14-,16-,17-;/m0./s1

HIDE SMILES / InChI

Molecular Formula C4H4O4
Molecular Weight 116.0722
Charge 0
Count
Stereochemistry ACHIRAL
Additional Stereochemistry No
Defined Stereocenters 0 / 0
E/Z Centers 1
Optical Activity NONE

Molecular Formula C20H28N2O5
Molecular Weight 376.4467
Charge 0
Count
Stereochemistry ABSOLUTE
Additional Stereochemistry No
Defined Stereocenters 3 / 3
E/Z Centers 0
Optical Activity UNSPECIFIED

Description
Curator's Comment: description was created based on several sources, including

Enalapril (marketed as Vasotec in the US, Enaladex and Renitec in some other countries) is an angiotensin-converting-enzyme (ACE) inhibitor used in the treatment of hypertension, diabetic nephropathy, and some types of chronic heart failure. Enalapril, after hydrolysis to enalaprilat, inhibits angiotensin-converting enzyme (ACE) in human subjects and animals. ACE is a peptidyl dipeptidase that catalyzes the conversion of angiotensin I to the vasoconstrictor substance, angiotensin II. Angiotensin II also stimulates aldosterone secretion by the adrenal cortex. The beneficial effects of enalapril in hypertension and heart failure appear to result primarily from suppression of the renin-angiotensin-aldosterone system. Inhibition of ACE results in decreased plasma angiotensin II, which leads to decreased vasopressor activity and to decrease aldosterone secretion.

Originator

Curator's Comment: # Merck

Approval Year

TargetsConditions

Conditions

ConditionModalityTargetsHighest PhaseProduct
Primary
VASOTEC

Approved Use

Hypertension Enalapril maleate is indicated for the treatment of hypertension. Enalapril maleate is effective alone or in combination with other antihypertensive agents, especially thiazide-type diuretics. The blood pressure lowering effects of enalapril maleate and thiazides are approximately additive. Heart Failure Enalapril maleate is indicated for the treatment of symptomatic congestive heart failure, usually in combination with diuretics and digitalis. In these patients enalapril maleate improves symptoms, increases survival, and decreases the frequency of hospitalization (see CLINICAL PHARMACOLOGY, Heart Failure, Mortality Trials for details and limitations of survival trials). Asymptomatic Left Ventricular Dysfunction In clinically stable asymptomatic patients with left ventricular dysfunction (ejection fraction ≤35 percent), enalapril maleate decreases the rate of development of overt heart failure and decreases the incidence of hospitalization for heart failure. (See CLINICAL PHARMACOLOGY, Heart Failure, Mortality Trials for details and limitations of survival trials.) In using enalapril maleate, consideration should be given to the fact that another angiotensin converting enzyme inhibitor, captopril, has caused agranulocytosis, particularly in patients with renal impairment or collagen vascular disease, and that available data are insufficient to show that enalapril maleate does not have a similar risk. (See WARNINGS.) In considering use of enalapril maleate, it should be noted that in controlled clinical trials ACE inhibitors have an effect on blood pressure that is less in black patients than in non-blacks. In addition, it should be noted that black patients receiving ACE inhibitors have been reported to have a higher incidence of angioedema compared to non-blacks. (See WARNINGS, Head and Neck Angioedema.), Hypertension Enalapril maleate is indicated for the treatment of hypertension. Enalapril maleate is effective alone or in combination with other antihypertensive agents, especially thiazide-type diuretics. The blood pressure lowering effects of enalapril maleate and thiazides are approximately additive., Heart Failure Enalapril maleate is indicated for the treatment of symptomatic congestive heart failure, usually in combination with diuretics and digitalis. In these patients enalapril maleate improves symptoms, increases survival, and decreases the frequency of hospitalization (see CLINICAL PHARMACOLOGY, Heart Failure, Mortality Trials for details and limitations of survival trials)., Asymptomatic Left Ventricular Dysfunction In clinically stable asymptomatic patients with left ventricular dysfunction (ejection fraction ≤35 percent), enalapril maleate decreases the rate of development of overt heart failure and decreases the incidence of hospitalization for heart failure. (See CLINICAL PHARMACOLOGY, Heart Failure, Mortality Trials for details and limitations of survival trials.) In using enalapril maleate, consideration should be given to the fact that another angiotensin converting enzyme inhibitor, captopril, has caused agranulocytosis, particularly in patients with renal impairment or collagen vascular disease, and that available data are insufficient to show that enalapril maleate does not have a similar risk. (See WARNINGS.) In considering use of enalapril maleate, it should be noted that in controlled clinical trials ACE inhibitors have an effect on blood pressure that is less in black patients than in non-blacks. In addition, it should be noted that black patients receiving ACE inhibitors have been reported to have a higher incidence of angioedema compared to non-blacks. (See WARNINGS, Head and Neck Angioedema.)

Launch Date

1985
Palliative
VASOTEC

Approved Use

Hypertension Enalapril maleate is indicated for the treatment of hypertension. Enalapril maleate is effective alone or in combination with other antihypertensive agents, especially thiazide-type diuretics. The blood pressure lowering effects of enalapril maleate and thiazides are approximately additive. Heart Failure Enalapril maleate is indicated for the treatment of symptomatic congestive heart failure, usually in combination with diuretics and digitalis. In these patients enalapril maleate improves symptoms, increases survival, and decreases the frequency of hospitalization (see CLINICAL PHARMACOLOGY, Heart Failure, Mortality Trials for details and limitations of survival trials). Asymptomatic Left Ventricular Dysfunction In clinically stable asymptomatic patients with left ventricular dysfunction (ejection fraction ≤35 percent), enalapril maleate decreases the rate of development of overt heart failure and decreases the incidence of hospitalization for heart failure. (See CLINICAL PHARMACOLOGY, Heart Failure, Mortality Trials for details and limitations of survival trials.) In using enalapril maleate, consideration should be given to the fact that another angiotensin converting enzyme inhibitor, captopril, has caused agranulocytosis, particularly in patients with renal impairment or collagen vascular disease, and that available data are insufficient to show that enalapril maleate does not have a similar risk. (See WARNINGS.) In considering use of enalapril maleate, it should be noted that in controlled clinical trials ACE inhibitors have an effect on blood pressure that is less in black patients than in non-blacks. In addition, it should be noted that black patients receiving ACE inhibitors have been reported to have a higher incidence of angioedema compared to non-blacks. (See WARNINGS, Head and Neck Angioedema.), Hypertension Enalapril maleate is indicated for the treatment of hypertension. Enalapril maleate is effective alone or in combination with other antihypertensive agents, especially thiazide-type diuretics. The blood pressure lowering effects of enalapril maleate and thiazides are approximately additive., Heart Failure Enalapril maleate is indicated for the treatment of symptomatic congestive heart failure, usually in combination with diuretics and digitalis. In these patients enalapril maleate improves symptoms, increases survival, and decreases the frequency of hospitalization (see CLINICAL PHARMACOLOGY, Heart Failure, Mortality Trials for details and limitations of survival trials)., Asymptomatic Left Ventricular Dysfunction In clinically stable asymptomatic patients with left ventricular dysfunction (ejection fraction ≤35 percent), enalapril maleate decreases the rate of development of overt heart failure and decreases the incidence of hospitalization for heart failure. (See CLINICAL PHARMACOLOGY, Heart Failure, Mortality Trials for details and limitations of survival trials.) In using enalapril maleate, consideration should be given to the fact that another angiotensin converting enzyme inhibitor, captopril, has caused agranulocytosis, particularly in patients with renal impairment or collagen vascular disease, and that available data are insufficient to show that enalapril maleate does not have a similar risk. (See WARNINGS.) In considering use of enalapril maleate, it should be noted that in controlled clinical trials ACE inhibitors have an effect on blood pressure that is less in black patients than in non-blacks. In addition, it should be noted that black patients receiving ACE inhibitors have been reported to have a higher incidence of angioedema compared to non-blacks. (See WARNINGS, Head and Neck Angioedema.)

Launch Date

1985
Palliative
VASOTEC

Approved Use

Hypertension Enalapril maleate is indicated for the treatment of hypertension. Enalapril maleate is effective alone or in combination with other antihypertensive agents, especially thiazide-type diuretics. The blood pressure lowering effects of enalapril maleate and thiazides are approximately additive. Heart Failure Enalapril maleate is indicated for the treatment of symptomatic congestive heart failure, usually in combination with diuretics and digitalis. In these patients enalapril maleate improves symptoms, increases survival, and decreases the frequency of hospitalization (see CLINICAL PHARMACOLOGY, Heart Failure, Mortality Trials for details and limitations of survival trials). Asymptomatic Left Ventricular Dysfunction In clinically stable asymptomatic patients with left ventricular dysfunction (ejection fraction ≤35 percent), enalapril maleate decreases the rate of development of overt heart failure and decreases the incidence of hospitalization for heart failure. (See CLINICAL PHARMACOLOGY, Heart Failure, Mortality Trials for details and limitations of survival trials.) In using enalapril maleate, consideration should be given to the fact that another angiotensin converting enzyme inhibitor, captopril, has caused agranulocytosis, particularly in patients with renal impairment or collagen vascular disease, and that available data are insufficient to show that enalapril maleate does not have a similar risk. (See WARNINGS.) In considering use of enalapril maleate, it should be noted that in controlled clinical trials ACE inhibitors have an effect on blood pressure that is less in black patients than in non-blacks. In addition, it should be noted that black patients receiving ACE inhibitors have been reported to have a higher incidence of angioedema compared to non-blacks. (See WARNINGS, Head and Neck Angioedema.), Hypertension Enalapril maleate is indicated for the treatment of hypertension. Enalapril maleate is effective alone or in combination with other antihypertensive agents, especially thiazide-type diuretics. The blood pressure lowering effects of enalapril maleate and thiazides are approximately additive., Heart Failure Enalapril maleate is indicated for the treatment of symptomatic congestive heart failure, usually in combination with diuretics and digitalis. In these patients enalapril maleate improves symptoms, increases survival, and decreases the frequency of hospitalization (see CLINICAL PHARMACOLOGY, Heart Failure, Mortality Trials for details and limitations of survival trials)., Asymptomatic Left Ventricular Dysfunction In clinically stable asymptomatic patients with left ventricular dysfunction (ejection fraction ≤35 percent), enalapril maleate decreases the rate of development of overt heart failure and decreases the incidence of hospitalization for heart failure. (See CLINICAL PHARMACOLOGY, Heart Failure, Mortality Trials for details and limitations of survival trials.) In using enalapril maleate, consideration should be given to the fact that another angiotensin converting enzyme inhibitor, captopril, has caused agranulocytosis, particularly in patients with renal impairment or collagen vascular disease, and that available data are insufficient to show that enalapril maleate does not have a similar risk. (See WARNINGS.) In considering use of enalapril maleate, it should be noted that in controlled clinical trials ACE inhibitors have an effect on blood pressure that is less in black patients than in non-blacks. In addition, it should be noted that black patients receiving ACE inhibitors have been reported to have a higher incidence of angioedema compared to non-blacks. (See WARNINGS, Head and Neck Angioedema.)

Launch Date

1985
Cmax

Cmax

ValueDoseCo-administeredAnalytePopulation
44.27 ng/mL
5 mg 2 times / day multiple, oral
dose: 5 mg
route of administration: Oral
experiment type: MULTIPLE
co-administered:
ENALAPRIL plasma
Homo sapiens
population: HEALTHY
age: ADULT
sex: FEMALE / MALE
food status: UNKNOWN
37.61 ng/mL
5 mg 2 times / day multiple, oral
dose: 5 mg
route of administration: Oral
experiment type: MULTIPLE
co-administered:
ENALAPRILAT plasma
Homo sapiens
population: HEALTHY
age: ADULT
sex: FEMALE / MALE
food status: UNKNOWN
AUC

AUC

ValueDoseCo-administeredAnalytePopulation
84.9 ng × h/mL
5 mg 2 times / day multiple, oral
dose: 5 mg
route of administration: Oral
experiment type: MULTIPLE
co-administered:
ENALAPRIL plasma
Homo sapiens
population: HEALTHY
age: ADULT
sex: FEMALE / MALE
food status: UNKNOWN
372.6 ng × h/mL
5 mg 2 times / day multiple, oral
dose: 5 mg
route of administration: Oral
experiment type: MULTIPLE
co-administered:
ENALAPRILAT plasma
Homo sapiens
population: HEALTHY
age: ADULT
sex: FEMALE / MALE
food status: UNKNOWN
T1/2

T1/2

ValueDoseCo-administeredAnalytePopulation
10.75 h
5 mg 2 times / day multiple, oral
dose: 5 mg
route of administration: Oral
experiment type: MULTIPLE
co-administered:
ENALAPRIL plasma
Homo sapiens
population: HEALTHY
age: ADULT
sex: FEMALE / MALE
food status: UNKNOWN
24.73 h
5 mg 2 times / day multiple, oral
dose: 5 mg
route of administration: Oral
experiment type: MULTIPLE
co-administered:
ENALAPRILAT plasma
Homo sapiens
population: HEALTHY
age: ADULT
sex: FEMALE / MALE
food status: UNKNOWN
Sourcing

Sourcing

Vendor/AggregatorIDURL
PubMed

PubMed

TitleDatePubMed
Severe childhood pemphigus vulgaris aggravated by enalapril.
2001
Barnidipine.
2001
Perindopril: an updated review of its use in hypertension.
2001
The role of angiotensin II receptor antagonists in the management of diabetes.
2001
The effect duration of candesartan cilexetil once daily, in comparison with enalapril once daily, in patients with mild to moderate hypertension.
2001
Modulation of the renin-angiotensin system may alter the adrenocortical regeneration.
2001
Differential effects of enalapril and irbesartan in experimental papillary necrosis.
2001
Solid-phase extraction and high-performance liquid chromatography applied to the determination of quinapril and its metabolite quinaprilat in urine.
2001 Apr
Reaction kinetics of solid-state cyclization of enalapril maleate investigated by isothermal FT-IR microscopic system.
2001 Apr
Pressure-independent enhancement of cardiac hypertrophy in natriuretic peptide receptor A-deficient mice.
2001 Apr
Comparison of a vasopeptidase inhibitor with neutral endopeptidase and angiotensin-converting enzyme inhibitors on bradykinin metabolism in the rat coronary bed.
2001 Apr
Cyclosporine induces myocardial connective tissue growth factor in spontaneously hypertensive rats on high-sodium diet.
2001 Apr 15
Determination of the antihypertensive drug cilazapril and its active metabolite cilazaprilat in pharmaceuticals and urine by solid-phase extraction and high-performance liquid chromatography with photometric detection.
2001 Apr 15
Abnormality of the myocardial sympathetic nervous system in a patient with Becker muscular dystrophy detected with iodine-123 metaiodobenzylguanidine scintigraphy.
2001 Aug
New insights in the pathophysiology of mitral and aortic regurgitation in pediatric age: role of angiotensin-converting enzyme inhibitor therapy.
2001 Feb
On glomerular structural alterations in type-1 diabetes. Companions of early diabetic glomerulopathy.
2001 Feb
Angiotensin converting enzyme inhibitor induced hyperkalaemic paralysis.
2001 Feb
Low-dose ACE with alpha- or beta-adrenergic receptor inhibitors have beneficial SHR cardiovascular effects.
2001 Jan
Normalisation of blood pressure in hypertensive TGR(mREN2)27 rats by amlodipine vs. enalapril: effects on cardiac hypertrophy and signal transduction pathways.
2001 Jan
Losartan, an angiotensin type I receptor antagonist, improves conduit vessel endothelial function in Type II diabetes.
2001 Jan
Angiotensin-converting enzyme inhibition with enalapril slows progressive intima-media thickening of the common carotid artery in patients with non-insulin-dependent diabetes mellitus.
2001 Jul
Protective role of enalapril for chronic tubulointerstitial lesions of hyperoxaluria.
2001 Jul
IgA nephropathy and inhibitors of the renin angiotensin system: is reduction in proteinuria adequate proof of efficacy?
2001 Jul
Coadministration of losartan and enalapril exerts additive antiproteinuric effect in IgA nephropathy.
2001 Jul
Effects of various antihypertensive drugs on the function of osteoblast.
2001 Jun
Comparison of effects of losartan versus enalapril on fibrinolysis and coagulation in patients with acute myocardial infarction.
2001 Jun 15
A retrospective analysis comparing the costs and cost effectiveness of amlodipine and enalapril in the treatment of hypertension.
2001 Mar
Beneficial effects of nicorandil versus enalapril in chronic rheumatic severe mitral regurgitation: six months follow up echocardiographic study.
2001 Mar
Strict volume control normalizes hypertension in peritoneal dialysis patients.
2001 Mar
Does enalapril prevent peritoneal fibrosis induced by hypertonic (3.86%) peritoneal dialysis solution?
2001 Mar-Apr
Comparison of the angiotensin II type 1-receptor antagonist YM358 and the angiotensin-converting enzyme inhibitor enalapril in rats with cardiac volume overload.
2001 May
A randomized and double-blind comparison of isradipine and spirapril as monotherapy and in combination on the decline in renal function in patients with chronic renal failure and hypertension.
2001 May
Bradykinin stimulates the release of tissue plasminogen activator in human coronary circulation: effects of angiotensin-converting enzyme inhibitors.
2001 May
Contributions of angiotensin II and tumor necrosis factor-alpha to the development of renal fibrosis.
2001 May
Resetting baroreceptors to a lower arterial pressure level by enalapril avoids baroreflex mediated activation of sympathetic nervous system by nifedipine.
2001 May 11
Improved survival with simendan after experimental myocardial infarction in rats.
2001 May 11
The effect of enalapril on advanced diabetic nephropathy in African-American females.
2001 Spring-Summer
Patents

Sample Use Guides

Hypertension: The recommended initial dose in patients not on diuretics is 5 mg once a day. Dosage Adjustment in Hypertensive Patients with Renal Impairment: The usual dose of enalapril is recommended for patients with a creatinine clearance >30 mL/min (serum creatinine of up to approximately 3 mg/dL). For patients with creatinine clearance ≤30 mL/min (serum creatinine ≥3 mg/dL), the first dose is 2.5 mg once daily. The dosage may be titrated upward until blood pressure is controlled or to a maximum of 40 mg daily. Heart Failure: The recommended initial dose is 2.5 mg. The recommended dosing range is 2.5 to 20 mg given twice a day
Route of Administration: Oral
Primary cultures of human proximal tubular cells (PTC) and renal cortical fibroblasts (CF) were exposed for 24 h to CyA in the presence or absence of enalaprilat (enalapril is a prodrug that is rapidly metabolized by liver esterases to enalaprilat). Enalaprilat completely reversed the stimulatory effects of CyA on CF collagen synthesis (CyA + enalaprilat 6.40 +/- 0.50% vs. CyA alone 8.33 +/- 0.56% vs. control 6.57 +/- 0.62% vs. enalaprilat alone 5.55 +/- 0.93%, p < 0.05) and PTC secretion of TGFbeta1 (0.71 +/- 0.11, 1.13 +/- 0.09, 0.89 +/- 0.07, and 0.67 +/- 0.09 ng/mg protein/day, respectively, p < 0.05).
Substance Class Chemical
Created
by admin
on Mon Mar 31 17:45:50 GMT 2025
Edited
by admin
on Mon Mar 31 17:45:50 GMT 2025
Record UNII
9O25354EPJ
Record Status Validated (UNII)
Record Version
  • Download
Name Type Language
AMPRACE
Preferred Name English
ENALAPRIL MALEATE
EP   GREEN BOOK   HSDB   JAN   MART.   MI   ORANGE BOOK   USAN   USP   USP-RS   VANDF   WHO-DD  
USAN  
Official Name English
VASERETIC COMPONENT ENALAPRIL MALEATE
Common Name English
MK-421
Code English
ENACARD
Brand Name English
ENALAPRIL MALEATE [JAN]
Common Name English
ENALAPRIL MALEATE [USP-RS]
Common Name English
1-(N-((S)-1-CARBOXY-3-PHENYLPROPYL)-L-ALANYL)-L-PROLINE 1'-ETHYL ESTER, MALEATE
Common Name English
L-PROLINE, 1-(N-(1-(ETHOXYCARBONYL)-3-PHENYLPROPYL)-L-ALANYL)-,(S)-,(Z)-2 BUTENEDIOATE (1:1)
Common Name English
RENITEN
Brand Name English
EPANED
Brand Name English
CARDIOVET
Brand Name English
ENALAPRIL MALEATE [GREEN BOOK]
Common Name English
INNOVACE
Brand Name English
HIPOARTEL
Brand Name English
ENALAPRIL MALEATE [EP MONOGRAPH]
Common Name English
LEXXEL COMPONENT ENALAPRIL MALEATE
Common Name English
RENITEC
Brand Name English
ENALAPRIL MALEATE [VANDF]
Common Name English
ENALAPRIL MALEATE [USP MONOGRAPH]
Common Name English
Enalapril maleate [WHO-DD]
Common Name English
GLIOTEN
Brand Name English
NAPRILENE
Brand Name English
ENALAPRIL MALEATE [HSDB]
Common Name English
XANEF
Brand Name English
RENIVACE
Brand Name English
TECZEM COMPONENT ENALAPRIL MALEATE
Common Name English
ENALAPRIL MALEATE [MART.]
Common Name English
ENAPREN
Brand Name English
ENALAPRIL MALEATE [MI]
Common Name English
ENALAPRIL MALEATE [USAN]
Common Name English
VASOTEC
Brand Name English
NSC-758143
Code English
ENALAPRIL MALEATE [ORANGE BOOK]
Common Name English
PRES
Brand Name English
Classification Tree Code System Code
NCI_THESAURUS C247
Created by admin on Mon Mar 31 17:45:50 GMT 2025 , Edited by admin on Mon Mar 31 17:45:50 GMT 2025
FDA ORPHAN DRUG 376712
Created by admin on Mon Mar 31 17:45:50 GMT 2025 , Edited by admin on Mon Mar 31 17:45:50 GMT 2025
Code System Code Type Description
HSDB
76095-16-4
Created by admin on Mon Mar 31 17:45:50 GMT 2025 , Edited by admin on Mon Mar 31 17:45:50 GMT 2025
PRIMARY
ECHA (EC/EINECS)
278-375-7
Created by admin on Mon Mar 31 17:45:50 GMT 2025 , Edited by admin on Mon Mar 31 17:45:50 GMT 2025
PRIMARY
PUBCHEM
5388961
Created by admin on Mon Mar 31 17:45:50 GMT 2025 , Edited by admin on Mon Mar 31 17:45:50 GMT 2025
PRIMARY
CAS
76095-16-4
Created by admin on Mon Mar 31 17:45:50 GMT 2025 , Edited by admin on Mon Mar 31 17:45:50 GMT 2025
PRIMARY
FDA UNII
9O25354EPJ
Created by admin on Mon Mar 31 17:45:50 GMT 2025 , Edited by admin on Mon Mar 31 17:45:50 GMT 2025
PRIMARY
MERCK INDEX
m4893
Created by admin on Mon Mar 31 17:45:50 GMT 2025 , Edited by admin on Mon Mar 31 17:45:50 GMT 2025
PRIMARY Merck Index
NSC
758143
Created by admin on Mon Mar 31 17:45:50 GMT 2025 , Edited by admin on Mon Mar 31 17:45:50 GMT 2025
PRIMARY
RS_ITEM_NUM
1235300
Created by admin on Mon Mar 31 17:45:50 GMT 2025 , Edited by admin on Mon Mar 31 17:45:50 GMT 2025
PRIMARY
DAILYMED
9O25354EPJ
Created by admin on Mon Mar 31 17:45:50 GMT 2025 , Edited by admin on Mon Mar 31 17:45:50 GMT 2025
PRIMARY
NCI_THESAURUS
C468
Created by admin on Mon Mar 31 17:45:50 GMT 2025 , Edited by admin on Mon Mar 31 17:45:50 GMT 2025
PRIMARY
SMS_ID
100000091343
Created by admin on Mon Mar 31 17:45:50 GMT 2025 , Edited by admin on Mon Mar 31 17:45:50 GMT 2025
PRIMARY
DRUG BANK
DBSALT001036
Created by admin on Mon Mar 31 17:45:50 GMT 2025 , Edited by admin on Mon Mar 31 17:45:50 GMT 2025
PRIMARY
EVMPD
SUB01884MIG
Created by admin on Mon Mar 31 17:45:50 GMT 2025 , Edited by admin on Mon Mar 31 17:45:50 GMT 2025
PRIMARY
RXCUI
203123
Created by admin on Mon Mar 31 17:45:50 GMT 2025 , Edited by admin on Mon Mar 31 17:45:50 GMT 2025
PRIMARY RxNorm
ChEMBL
CHEMBL578
Created by admin on Mon Mar 31 17:45:50 GMT 2025 , Edited by admin on Mon Mar 31 17:45:50 GMT 2025
PRIMARY
EPA CompTox
DTXSID30896796
Created by admin on Mon Mar 31 17:45:50 GMT 2025 , Edited by admin on Mon Mar 31 17:45:50 GMT 2025
PRIMARY
Related Record Type Details
BASIS OF STRENGTH->SUBSTANCE
ASSAY (HPLC)
USP
TARGET -> INHIBITOR
IC50
BASIS OF STRENGTH->SUBSTANCE
ASSAY (TITRATION)
EP
PARENT -> SALT/SOLVATE
PARENT -> SALT/SOLVATE
Related Record Type Details
IMPURITY -> PARENT
CHROMATOGRAPHIC PURITY (HPLC/UV)
USP
IMPURITY -> PARENT
IMPURITY -> PARENT
CHROMATOGRAPHIC PURITY (HPLC/UV)
USP
IMPURITY -> PARENT
CHROMATOGRAPHIC PURITY (HPLC/UV)
EP
IMPURITY -> PARENT
CHROMATOGRAPHIC PURITY (HPLC/UV)
EP
IMPURITY -> PARENT
CHROMATOGRAPHIC PURITY (HPLC/UV)
EP
IMPURITY -> PARENT
CHROMATOGRAPHIC PURITY (HPLC/UV)
EP
IMPURITY -> PARENT
CHROMATOGRAPHIC PURITY (HPLC/UV)
USP
IMPURITY -> PARENT
CHROMATOGRAPHIC PURITY (HPLC/UV)
EP
IMPURITY -> PARENT
IMPURITY -> PARENT
CHROMATOGRAPHIC PURITY (HPLC/UV)
EP
IMPURITY -> PARENT
IMPURITY -> PARENT
IMPURITY -> PARENT
CHROMATOGRAPHIC PURITY (HPLC/UV)
USP
Related Record Type Details
ACTIVE MOIETY