{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
US Approved Rx
(2016)
Source:
ANDA079167
(2016)
Source URL:
First approved in 2003
Source:
NDA021366
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
CRESTOR (rosuvastatin calcium) is an inhibitor of HMG-CoA reductase. It has been widely launched for the treatment of patients with dyslipidaemia and has also been approved in the US and EU to slow the progression of atherosclerosis.
Status:
US Approved Rx
(2016)
Source:
ANDA079167
(2016)
Source URL:
First approved in 2003
Source:
NDA021366
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
CRESTOR (rosuvastatin calcium) is an inhibitor of HMG-CoA reductase. It has been widely launched for the treatment of patients with dyslipidaemia and has also been approved in the US and EU to slow the progression of atherosclerosis.
Status:
US Approved Rx
(2016)
Source:
ANDA079167
(2016)
Source URL:
First approved in 2003
Source:
NDA021366
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Conditions:
CRESTOR (rosuvastatin calcium) is an inhibitor of HMG-CoA reductase. It has been widely launched for the treatment of patients with dyslipidaemia and has also been approved in the US and EU to slow the progression of atherosclerosis.
Status:
US Approved Rx
(2016)
Source:
ANDA079167
(2016)
Source URL:
First approved in 2003
Source:
NDA021366
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
CRESTOR (rosuvastatin calcium) is an inhibitor of HMG-CoA reductase. It has been widely launched for the treatment of patients with dyslipidaemia and has also been approved in the US and EU to slow the progression of atherosclerosis.
Status:
US Approved Rx
(2016)
Source:
ANDA079167
(2016)
Source URL:
First approved in 2003
Source:
NDA021366
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
CRESTOR (rosuvastatin calcium) is an inhibitor of HMG-CoA reductase. It has been widely launched for the treatment of patients with dyslipidaemia and has also been approved in the US and EU to slow the progression of atherosclerosis.
Status:
US Approved Rx
(2018)
Source:
ANDA211088
(2018)
Source URL:
First approved in 1997
Source:
MIRAPEX by BOEHRINGER INGELHEIM
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Pramipexole is a nonergot dopamine agonist with high relative in vitro specificity and full intrinsic activity at the D2 subfamily of dopamine receptors, binding with higher affinity to D3 than to D2 or D4 receptor subtypes. The relevance of D3 receptor binding in Parkinson's disease is unknown. The precise mechanism of action of Pramipexole as a treatment for Parkinson's disease is unknown, although it is believed to be related to its ability to stimulate dopamine receptors in the striatum. This conclusion is supported by electrophysiologic studies in animals that have demonstrated that Pramipexole influences striatal neuronal firing rates via activation of dopamine receptors in the striatum and the substantia nigra, the site of neurons that send projections to the striatum.
Pramipexole is used for the treatment of signs and symptoms of idiopathic Parkinson's disease.
Status:
US Approved Rx
(2018)
Source:
ANDA211088
(2018)
Source URL:
First approved in 1997
Source:
MIRAPEX by BOEHRINGER INGELHEIM
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Pramipexole is a nonergot dopamine agonist with high relative in vitro specificity and full intrinsic activity at the D2 subfamily of dopamine receptors, binding with higher affinity to D3 than to D2 or D4 receptor subtypes. The relevance of D3 receptor binding in Parkinson's disease is unknown. The precise mechanism of action of Pramipexole as a treatment for Parkinson's disease is unknown, although it is believed to be related to its ability to stimulate dopamine receptors in the striatum. This conclusion is supported by electrophysiologic studies in animals that have demonstrated that Pramipexole influences striatal neuronal firing rates via activation of dopamine receptors in the striatum and the substantia nigra, the site of neurons that send projections to the striatum.
Pramipexole is used for the treatment of signs and symptoms of idiopathic Parkinson's disease.
Status:
US Approved Rx
(2016)
Source:
ANDA204048
(2016)
Source URL:
First approved in 1995
Source:
RILUTEK by COVIS
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Riluzole, a member of the benzothiazole class, is indicated for the treatment of patients with amyotrophic lateral sclerosis. Its pharmacological properties include the following, some of which may be related to its effect: 1) an inhibitory effect on glutamate release (activation of glutamate reuptake), 2) inactivation of voltage-dependent sodium channels, and 3) ability to interfere with intracellular events that follow transmitter binding at excitatory amino acid receptors. Common adverse reactions include headache, abdominal pain, back pain, vomiting, dyspepsia, diarrhea, dizziness. Riluzole-treated patients that take other hepatotoxic drugs may be at increased risk for hepatotoxicity.
Status:
US Approved Rx
(2016)
Source:
ANDA204048
(2016)
Source URL:
First approved in 1995
Source:
RILUTEK by COVIS
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Riluzole, a member of the benzothiazole class, is indicated for the treatment of patients with amyotrophic lateral sclerosis. Its pharmacological properties include the following, some of which may be related to its effect: 1) an inhibitory effect on glutamate release (activation of glutamate reuptake), 2) inactivation of voltage-dependent sodium channels, and 3) ability to interfere with intracellular events that follow transmitter binding at excitatory amino acid receptors. Common adverse reactions include headache, abdominal pain, back pain, vomiting, dyspepsia, diarrhea, dizziness. Riluzole-treated patients that take other hepatotoxic drugs may be at increased risk for hepatotoxicity.
Status:
US Approved Rx
(2025)
Source:
ANDA217108
(2025)
Source URL:
First approved in 1994
Source:
NDA050709
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Tacrolimus, previously known as FK506, is the active ingredient in Prograf. Tacrolimus is a macrolide immunosuppressant produced by Streptomyces tsukubaensis. It reduces peptidyl-prolyl isomerase activity by binding to the immunophilin FKBP-12 (FK506 binding protein) creating a new complex. This FKBP12-FK506 complex interacts with and inhibits calcineurin thus inhibiting both T-lymphocyte signal transduction and IL-2 transcription. Tacrolimus inhibits T-lymphocyte activation, although the exact mechanism of action is not known. Experimental evidence suggests that tacrolimus binds to an intracellular protein, FKBP-12. A complex of tacrolimus-FKBP-12, calcium, calmodulin, and calcineurin is then formed and the phosphatase activity of calcineurin inhibited. This effect may prevent the dephosphorylation and translocation of nuclear factor of activated T-cells (NF-AT), a nuclear component thought to initiate gene transcription for the formation of lymphokines (such as interleukin-2, gamma interferon). The net result is the inhibition of T-lymphocyte activation (i.e., immunosuppression). Prograf is indicated for the prophylaxis of organ rejection in patients receiving allogeneic liver transplants, kidney transplants, heart transplants. It has also been used in a topical preparation in the treatment of severe atopic dermatitis.