{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
US Approved Rx
(2016)
Source:
ANDA207938
(2016)
Source URL:
First approved in 1982
Source:
NDA018147
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Piroxicam is in a class of drugs called nonsteroidal anti-inflammatory drugs (NSAIDs). It was originally brought to market by Pfizer under the tradename Feldene in 1980, became generic in 1992, and is marketed worldwide under many brandnames. Piroxicam works by reducing hormones that cause inflammation and pain in the body. Piroxicam is used to reduce the pain, inflammation, and stiffness caused by rheumatoid arthritis and osteoarthritis. The antiinflammatory effect of Piroxicam may result from the reversible inhibition of cyclooxygenase, causing the peripheral inhibition of prostaglandin synthesis. The prostaglandins are produced by an enzyme called Cox-1. Piroxicam blocks the Cox-1 enzyme, resulting into the disruption of production of prostaglandins. Piroxicam also inhibits the migration of leukocytes into sites of inflammation and prevents the formation of thromboxane A2, an aggregating agent, by the platelets. Piroxicam is used for treatment of osteoarthritis and rheumatoid arthritis.
Status:
US Approved Rx
(2000)
Source:
ANDA075581
(2000)
Source URL:
First approved in 1981
Source:
NIZORAL by JANSSEN PHARMS
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
2S,4R ketoconazole or levoketoconazole is the 2S,4R enantiomer of ketoconazole, purified from racemic ketoconazole. Both enantiomers exerts antifungal activity. Ketoconazole activates AhR in gene reporter cell line and dose-dependently induces CYP1A1 mRNA and CYP1A1 protein in HepG2 cells, with enantiospecific pattern, i.e. 2R,4S ketoconazole was much more active as compared to 2S,4R ketoconazole. Levoketoconazole was shown to be a more potent inhibitor than the 2R,4S enantiomer of several enzymes in the steroidogenic pathway (CYP11B1, CYP17 and CYP21). Levoketoconazole was tested for the treatment of endogenous Cushing’s syndrome (Phase III) and type 2 diabetes mellitus (Phase II).
Status:
US Approved Rx
(1991)
Source:
ANDA072050
(1991)
Source URL:
First approved in 1978
Source:
CLINORIL by MERCK
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Sulindac is a nonsteroidal anti-inflammatory agent (NSAIA) of the arylalkanoic acid class that is marketed in the U.S. by Merck as Clinoril. Like other NSAIAs, it may be used in the treatment of acute or chronic inflammatory conditions. Sulindac is a prodrug, derived from sulfinylindene, that is converted in vivo to an active sulfide compound by liver enzymes. The sulfide metabolite then undergoes enterohepatic circulation; it is excreted in the bile and then reabsorbed from the intestine. This is thought to help maintain constant blood levels with reduced gastrointestinal side effects. Some studies have shown sulindac to be relatively less irritating to the stomach than other NSAIA's except for drugs of the cyclooxygenase-2 (COX-2) inhibitor class. The exact mechanism of its NSAIA properties is unknown, but it is thought to act on enzymes COX-1 and COX-2, inhibiting prostaglandin synthesis.
Status:
US Approved Rx
(1991)
Source:
ANDA072050
(1991)
Source URL:
First approved in 1978
Source:
CLINORIL by MERCK
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Sulindac is a nonsteroidal anti-inflammatory agent (NSAIA) of the arylalkanoic acid class that is marketed in the U.S. by Merck as Clinoril. Like other NSAIAs, it may be used in the treatment of acute or chronic inflammatory conditions. Sulindac is a prodrug, derived from sulfinylindene, that is converted in vivo to an active sulfide compound by liver enzymes. The sulfide metabolite then undergoes enterohepatic circulation; it is excreted in the bile and then reabsorbed from the intestine. This is thought to help maintain constant blood levels with reduced gastrointestinal side effects. Some studies have shown sulindac to be relatively less irritating to the stomach than other NSAIA's except for drugs of the cyclooxygenase-2 (COX-2) inhibitor class. The exact mechanism of its NSAIA properties is unknown, but it is thought to act on enzymes COX-1 and COX-2, inhibiting prostaglandin synthesis.
Status:
US Approved Rx
(2020)
Source:
ANDA209197
(2020)
Source URL:
First approved in 1964
Source:
ALKERAN by APOTEX
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Melphalan, also known as L-phenylalanine mustard, phenylalanine mustard, L-PAM, or L-sarcolysin, is a phenylalanine derivative of nitrogen mustard. Melphalan is a bifunctional alkylating agent which produces a number of DNA adducts with the DNA interstrand crosslink (ICL) considered to be the critical cytotoxic lesion. Melphalan is used to treat different cancers including myeloma, melanoma and ovarian cancer.
Status:
US Approved Rx
(2020)
Source:
ANDA209197
(2020)
Source URL:
First approved in 1964
Source:
ALKERAN by APOTEX
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Melphalan, also known as L-phenylalanine mustard, phenylalanine mustard, L-PAM, or L-sarcolysin, is a phenylalanine derivative of nitrogen mustard. Melphalan is a bifunctional alkylating agent which produces a number of DNA adducts with the DNA interstrand crosslink (ICL) considered to be the critical cytotoxic lesion. Melphalan is used to treat different cancers including myeloma, melanoma and ovarian cancer.
Status:
US Approved Rx
(2020)
Source:
ANDA209197
(2020)
Source URL:
First approved in 1964
Source:
ALKERAN by APOTEX
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Melphalan, also known as L-phenylalanine mustard, phenylalanine mustard, L-PAM, or L-sarcolysin, is a phenylalanine derivative of nitrogen mustard. Melphalan is a bifunctional alkylating agent which produces a number of DNA adducts with the DNA interstrand crosslink (ICL) considered to be the critical cytotoxic lesion. Melphalan is used to treat different cancers including myeloma, melanoma and ovarian cancer.
Status:
Investigational
Class (Stereo):
CHEMICAL (ABSOLUTE)
Squalamine is a steroid-polyamine conjugate compound with broad-spectrum antimicrobial activity and anti-angiogenic activity. Squalamine selectively inhibits new blood vessel formation; this activity is thought to be mediated through inhibition of the sodium-hydrogen antiporter sodium-proton exchangers (specifically the NHE3 isoform) causing inhibition of hydrogen ion efflux from endothelial cells, with subsequent reduction of cellular proliferation. Studies in tumor-bearing mice have shown that squalamine inhibits angiogenesis and tumor growth in xenograft models of lung, breast, ovarian, and prostate cancer and in brain and breast allograft tumor models in rats. Squalamine also has been shown to prevent lung metastases in the murine Lewis lung carcinoma model, both as a single agent and in combination with various other chemotherapeutics. Squalamine does not appear to have substantial direct effects on primary tumor growth in animal models when administered as a single agent. However, enhanced antitumor responses are observed when squalamine is administered in combination with cytotoxic chemotherapeutic agents when compared with cytotoxic agents used alone. Squalamine was studied as a potential cancer drug and as a potential treatment for wet macular degeneration but as of 2018 had not succeeded in Phase III trials for any use.
Status:
Investigational
Class (Stereo):
CHEMICAL (ABSOLUTE)
Squalamine is a steroid-polyamine conjugate compound with broad-spectrum antimicrobial activity and anti-angiogenic activity. Squalamine selectively inhibits new blood vessel formation; this activity is thought to be mediated through inhibition of the sodium-hydrogen antiporter sodium-proton exchangers (specifically the NHE3 isoform) causing inhibition of hydrogen ion efflux from endothelial cells, with subsequent reduction of cellular proliferation. Studies in tumor-bearing mice have shown that squalamine inhibits angiogenesis and tumor growth in xenograft models of lung, breast, ovarian, and prostate cancer and in brain and breast allograft tumor models in rats. Squalamine also has been shown to prevent lung metastases in the murine Lewis lung carcinoma model, both as a single agent and in combination with various other chemotherapeutics. Squalamine does not appear to have substantial direct effects on primary tumor growth in animal models when administered as a single agent. However, enhanced antitumor responses are observed when squalamine is administered in combination with cytotoxic chemotherapeutic agents when compared with cytotoxic agents used alone. Squalamine was studied as a potential cancer drug and as a potential treatment for wet macular degeneration but as of 2018 had not succeeded in Phase III trials for any use.
Status:
Investigational
Class (Stereo):
CHEMICAL (ABSOLUTE)
Squalamine is a steroid-polyamine conjugate compound with broad-spectrum antimicrobial activity and anti-angiogenic activity. Squalamine selectively inhibits new blood vessel formation; this activity is thought to be mediated through inhibition of the sodium-hydrogen antiporter sodium-proton exchangers (specifically the NHE3 isoform) causing inhibition of hydrogen ion efflux from endothelial cells, with subsequent reduction of cellular proliferation. Studies in tumor-bearing mice have shown that squalamine inhibits angiogenesis and tumor growth in xenograft models of lung, breast, ovarian, and prostate cancer and in brain and breast allograft tumor models in rats. Squalamine also has been shown to prevent lung metastases in the murine Lewis lung carcinoma model, both as a single agent and in combination with various other chemotherapeutics. Squalamine does not appear to have substantial direct effects on primary tumor growth in animal models when administered as a single agent. However, enhanced antitumor responses are observed when squalamine is administered in combination with cytotoxic chemotherapeutic agents when compared with cytotoxic agents used alone. Squalamine was studied as a potential cancer drug and as a potential treatment for wet macular degeneration but as of 2018 had not succeeded in Phase III trials for any use.