U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 1 - 10 of 19 results

Linezolid is an antibiotic used for the treatment of infections caused by Gram-positive bacteria that are resistant to other antibiotics. Linezolid appears to be unique in that it blocks the initiation of protein production. Most common adverse reactions include diarrhea, vomiting, headache, nausea, and anemia. Linezolid has the potential for interaction with adrenergic and serotonergic agents. And with monoamine oxidase inhibitors because it’s nonselective inhibitor of monoamine oxidase.
Dalfopristin is a pristinamycin-like component of anti-bacterial drug called Synercid which also containes quinupristin (quinupristin:dalfopristin ratio is 30:70 (w/w)). The drug was approved by FDA and used for the treatment of skin diseases caused by Staphylococcus aureus or Streptococcus pyogenes. Dalfopristin binds to the RNA of the 50S ribosomal subunit and thus inhibits the late phase of protein synthesis.
Status:
US Approved OTC
Source:
21 CFR 333.110(f) first aid antibiotic:ointment tetracycline hydrochloride
Source URL:
First approved in 1953

Class (Stereo):
CHEMICAL (ABSOLUTE)



Discovered as natural products from actinomycetes soil bacteria, the tetracyclines were first reported in the scientific literature in 1948. They were noted for their broad spectrum antibacterial activity and were commercialized with clinical success beginning in the late 1940s to the early 1950s. By catalytic hydrogenation of Aureomycin, using palladium metal and hydrogen, the C7 deschloro derivative was synthesized, producing a compound of higher potency, a better solubility profile, and favorable pharmacological activity; it was subsequently named tetracycline. Tetracyclines are primarily bacteriostatic and exert their antimicrobial effect by the inhibition of protein synthesis by binding to the 30S ribosomal subunit. Tetracycline is active against a broad range of gram-negative and gram-positive organisms. Tetracycline is indicated in the treatment of infections caused by susceptible strains. To reduce the development of drug-resistant bacteria and maintain the effectiveness of tetracycline hydrochloride and other antibacterial drugs, tetracycline hydrochloride should be used only to treat or prevent infections that are proven or strongly suspected to be caused by bacteria.
Status:
US Previously Marketed
Source:
Trobicin by Upjohn
(1971)
Source URL:
First approved in 1971
Source:
Trobicin by Upjohn
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Spectinomycin is an antibiotic produced by Streptomyces spectabilis. It is active against gram-negative bacteria and used for the treatment of acute gonorrheal urethritis and proctitis in the male and acute gonorrheal cervicitis and proctitis in the female when due to susceptible strains of Neisseria gonorrhoeae. In vitro studies have shown spectinomycin to be active against most strains of Neisseria gonorrhoeae (minimum inhibitory concentration <7.5 to 20 mcg/mL). Footprint studies indicate that spectinomycin exerts regional effects on ribosomal structure. Spectinomycin hydrochloride is an inhibitor of protein synthesis in the bacterial cell; the site of action is the 30S ribosomal subunit. The antibiotic is not significantly bound to plasma protein. Spectinomycin was discovered 1961. It is on the World Health Organization's List of Essential Medicines, the most important medications needed in a basic health system. This antibiotic is no longer available in the United States. Pfizer has discontinued distribution of spectinomycin (Trobicin) in the U.S. The drug continues to be distributed outside the U.S.
Linezolid is an antibiotic used for the treatment of infections caused by Gram-positive bacteria that are resistant to other antibiotics. Linezolid appears to be unique in that it blocks the initiation of protein production. Most common adverse reactions include diarrhea, vomiting, headache, nausea, and anemia. Linezolid has the potential for interaction with adrenergic and serotonergic agents. And with monoamine oxidase inhibitors because it’s nonselective inhibitor of monoamine oxidase.
Dalfopristin is a pristinamycin-like component of anti-bacterial drug called Synercid which also containes quinupristin (quinupristin:dalfopristin ratio is 30:70 (w/w)). The drug was approved by FDA and used for the treatment of skin diseases caused by Staphylococcus aureus or Streptococcus pyogenes. Dalfopristin binds to the RNA of the 50S ribosomal subunit and thus inhibits the late phase of protein synthesis.
Status:
US Approved OTC
Source:
21 CFR 333.110(f) first aid antibiotic:ointment tetracycline hydrochloride
Source URL:
First approved in 1953

Class (Stereo):
CHEMICAL (ABSOLUTE)



Discovered as natural products from actinomycetes soil bacteria, the tetracyclines were first reported in the scientific literature in 1948. They were noted for their broad spectrum antibacterial activity and were commercialized with clinical success beginning in the late 1940s to the early 1950s. By catalytic hydrogenation of Aureomycin, using palladium metal and hydrogen, the C7 deschloro derivative was synthesized, producing a compound of higher potency, a better solubility profile, and favorable pharmacological activity; it was subsequently named tetracycline. Tetracyclines are primarily bacteriostatic and exert their antimicrobial effect by the inhibition of protein synthesis by binding to the 30S ribosomal subunit. Tetracycline is active against a broad range of gram-negative and gram-positive organisms. Tetracycline is indicated in the treatment of infections caused by susceptible strains. To reduce the development of drug-resistant bacteria and maintain the effectiveness of tetracycline hydrochloride and other antibacterial drugs, tetracycline hydrochloride should be used only to treat or prevent infections that are proven or strongly suspected to be caused by bacteria.
Status:
US Approved OTC
Source:
21 CFR 333.110(f) first aid antibiotic:ointment tetracycline hydrochloride
Source URL:
First approved in 1953

Class (Stereo):
CHEMICAL (ABSOLUTE)



Discovered as natural products from actinomycetes soil bacteria, the tetracyclines were first reported in the scientific literature in 1948. They were noted for their broad spectrum antibacterial activity and were commercialized with clinical success beginning in the late 1940s to the early 1950s. By catalytic hydrogenation of Aureomycin, using palladium metal and hydrogen, the C7 deschloro derivative was synthesized, producing a compound of higher potency, a better solubility profile, and favorable pharmacological activity; it was subsequently named tetracycline. Tetracyclines are primarily bacteriostatic and exert their antimicrobial effect by the inhibition of protein synthesis by binding to the 30S ribosomal subunit. Tetracycline is active against a broad range of gram-negative and gram-positive organisms. Tetracycline is indicated in the treatment of infections caused by susceptible strains. To reduce the development of drug-resistant bacteria and maintain the effectiveness of tetracycline hydrochloride and other antibacterial drugs, tetracycline hydrochloride should be used only to treat or prevent infections that are proven or strongly suspected to be caused by bacteria.
Status:
US Approved OTC
Source:
21 CFR 333.110(f) first aid antibiotic:ointment tetracycline hydrochloride
Source URL:
First approved in 1953

Class (Stereo):
CHEMICAL (ABSOLUTE)



Discovered as natural products from actinomycetes soil bacteria, the tetracyclines were first reported in the scientific literature in 1948. They were noted for their broad spectrum antibacterial activity and were commercialized with clinical success beginning in the late 1940s to the early 1950s. By catalytic hydrogenation of Aureomycin, using palladium metal and hydrogen, the C7 deschloro derivative was synthesized, producing a compound of higher potency, a better solubility profile, and favorable pharmacological activity; it was subsequently named tetracycline. Tetracyclines are primarily bacteriostatic and exert their antimicrobial effect by the inhibition of protein synthesis by binding to the 30S ribosomal subunit. Tetracycline is active against a broad range of gram-negative and gram-positive organisms. Tetracycline is indicated in the treatment of infections caused by susceptible strains. To reduce the development of drug-resistant bacteria and maintain the effectiveness of tetracycline hydrochloride and other antibacterial drugs, tetracycline hydrochloride should be used only to treat or prevent infections that are proven or strongly suspected to be caused by bacteria.
Status:
US Approved OTC
Source:
21 CFR 333.110(f) first aid antibiotic:ointment tetracycline hydrochloride
Source URL:
First approved in 1953

Class (Stereo):
CHEMICAL (ABSOLUTE)



Discovered as natural products from actinomycetes soil bacteria, the tetracyclines were first reported in the scientific literature in 1948. They were noted for their broad spectrum antibacterial activity and were commercialized with clinical success beginning in the late 1940s to the early 1950s. By catalytic hydrogenation of Aureomycin, using palladium metal and hydrogen, the C7 deschloro derivative was synthesized, producing a compound of higher potency, a better solubility profile, and favorable pharmacological activity; it was subsequently named tetracycline. Tetracyclines are primarily bacteriostatic and exert their antimicrobial effect by the inhibition of protein synthesis by binding to the 30S ribosomal subunit. Tetracycline is active against a broad range of gram-negative and gram-positive organisms. Tetracycline is indicated in the treatment of infections caused by susceptible strains. To reduce the development of drug-resistant bacteria and maintain the effectiveness of tetracycline hydrochloride and other antibacterial drugs, tetracycline hydrochloride should be used only to treat or prevent infections that are proven or strongly suspected to be caused by bacteria.

Showing 1 - 10 of 19 results