U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 111 - 120 of 422 results


Class (Stereo):
CHEMICAL (ABSOLUTE)



Tafamidis meglumine (Vyndaqel®, Pfizer) is a novel, first-in-class drug for the treatment of transthyretin familial amyloid polyneuropathy (TTR-FAP), a rare neurodegenerative disorder characterized by progressive sensory, motor and autonomic impairment that is ultimately fatal. Pathogenic mutations in the transthyretin (TTR) protein lead to destabilization of its tetrameric structure and subsequent formation of amyloid aggregates. Tafamidis is a small-molecule inhibitor that binds selectively to TTR in human plasma and kinetically stabilizes the tetrameric structure of both wild-type TTR and a number of different mutants. Clinical trials indicate that tafamidis slows disease progression in patients with TTR-FAP and reduces the burden of disease, demonstrating improvement in small and large nerve fiber function, modified body mass index and lower extremity neurological examination. Tafamidis meglumine has been launched for TTR FAP in the EU, Japan, Argentina, Malta and Mexico, and is preregistration in the US for this indication.
Lorlatinib is an investigational medicine that inhibits the anaplastic lymphoma kinase (ALK) and ROS1 proto-oncogene. Lorlatinib was specifically designed to inhibit tumor mutations that drive resistance to other ALK inhibitors. Lorlatinib has in vitro activity against ALK and number of other tyrosine kinase receptor related targets including ROS1, TYK1, FER, FPS, TRKA, TRKB, TRKC, FAK, FAK2, and ACK. Lorlatinib demonstrated in vitro activity against multiple mutant forms of the ALK enzyme, including some mutations detected in tumors at the time of disease progression on crizotinib and other ALK inhibitors. Moreover, lorlatinib possesses the capability to cross the blood-brain barrier, allowing it to reach and treat progressive or worsening brain metastases as well. Lorlatinib is a third-generation anaplastic lymphoma kinase (ALK) tyrosine kinase inhibitor (TKI) indicated for the treatment of patients with ALK-positive metastatic non-small cell lung cancer (NSCLC) whose disease has progressed on a) the prior use of crizotinib and at least one other ALK inhibitor for metastatic disease, or b) the prior use of alectinib as the first ALK inhibitor therapy for metastatic disease, or c) the prior use of certinib as the first ALK inhibitor therapy for metastatic disease.

Class (Stereo):
CHEMICAL (ACHIRAL)



Tecovirimat (ST-246) is a low-molecular-weight compound (molecular weight = 376), that is potent (concentration that inhibited virus replication by 50% = 0.010 microM), selective (concentration of compound that inhibited cell viability by 50% = >40 microM), and active against multiple orthopoxviruses, including vaccinia, monkeypox, camelpox, cowpox, ectromelia (mousepox), and variola viruses. The antiviral activity is specific for orthopoxviruses and the compound does not inhibit the replication of other RNA- and DNA-containing viruses or inhibit cell proliferation at concentrations of compound that are antiviral. ST-246 targets vaccinia virus p37, a viral protein required for envelopment and secretion of extracellular forms of virus. The compound is orally bioavailable and protects multiple animal species from lethal orthopoxvirus challenge. rug substance and drug product processes have been developed and commercial scale batches have been produced using Good Manufacturing Processes (GMP). Human phase I clinical trials have shown that ST-246 is safe and well tolerated in healthy human volunteers. Based on the results of the clinical evaluation, once a day dosing should provide plasma drug exposure in the range predicted to be antiviral based on data from efficacy studies in animal models of orthopoxvirus disease.
Enasidenib, aslo known as AG-221 and CC-90007, is a potent and selective IDH2 inhibitor with potential anticancer activity (IDH2 = Isocitrate dehydrogenase 2). The mutations of IDH2 present in certain cancer cells result in a new ability of the enzyme to catalyze the NAPH-dependent reduction of α-ketoglutarate to R(-)-2-hydroxyglutarate (2HG). The production of 2HG is believed to contribute to the formation and progression of cancer. The inhibition of mutant IDH2 and its neoactivity is therefore a potential therapeutic treatment for cancer. Enasidenib is an orally available, selective, potent inhibitor of the mutated IDH2 protein, making it a highly targeted investigational medicine for the potential treatment of patients with cancers that harbor an IDH2 mutation. Enasidenib has received orphan drug and fast track designations from the U.S. FDA. Enasidenib mesylate is in phase II clinical trials for Solid tumours and phase III clinical trials for the treatment of acute myeloid leukaemia.
Naldemedine (Symproic) is an opioid antagonist indicated for the treatment of opioid-induced constipation (OIC) in adult patients with chronic non-cancer pain. Naldemedine is an opioid antagonist with binding affinities for mu-, delta-, and kappa-opioid receptors. Naldemedine functions as a peripherally-acting mu-opioid receptor antagonist in tissues such as the gastrointestinal tract, thereby decreasing the constipating effects of opioids. Naldemedine is a derivative of naltrexone to which a side chain has been added that increases the molecular weight and the polar surface area, thereby reducing its ability to cross the blood-brain barrier (BBB). Naldemedine is also a substrate of the P-glycoprotein (P-gp) efflux transporter. Based on these properties, the CNS penetration of naldemedine is expected to be negligible at the recommended dose levels, limiting the potential for interference with centrally-mediated opioid analgesia. Naldemedine was approved in 2017 in both the US and Japan for the treatment of Opioid-induced Constipation.
Delafloxacin (CAS registry number 189279-58-1) was described as WQ-3034 by Wakunaga Pharmaceutical Co., Ltd., Osaka & Hiroshima, Japan. It was first licensed in 1999 to Abbott Park, IL, and further developed as ABT-492. Delafloxacin (Baxdela), a fluoroquinolone antibiotic, is currently being developed by Melinta Therapeutics. It is a novel investigational fluoroquinolone in development for the treatment of uncomplicated gonorrhea, and acute bacterial skin and skin structure infections. Delafloxacin shows MICs remarkably low against Gram-positive organisms and anaerobes and similar to those of ciprofloxacin against Gram-negative bacteria. It remains active against most fluoroquinolone-resistant strains, except enterococci. Its potency is further increased in acidic environments (found in many infection sites). Delafloxacin is active on staphylococci growing intracellularly or in biofilms. Delafloxacin is a dual-targeting fluoroquinolone, capable of forming cleavable complexes with DNA and topoisomerase IV or DNA gyrase and of inhibiting the activity of these enzymes in both Gram-positive and Gram-negative bacteria. On Oct 24, 2016, Melinta Therapeutics Submitted Baxdela New Drug Application for hospital-treated skin infections.
Cobimetinib is an orally active, potent and highly selective small molecule inhibiting mitogen-activated protein kinase kinase 1 (MAP2K1 or MEK1), and central components of the RAS/RAF/MEK/ERK signal transduction pathway. It has been approved in Switzerland and the US, in combination with vemurafenib for the treatment of patients with unresectable or metastatic BRAF V600 mutation-positive melanoma. Preclinical studies have demonstrated that Cobimetinib is effective in inhibiting the growth of tumor cells bearing a BRAF mutation, which has been found to be associated with many tumor types. A threonine-tyrosine kinase and a key component of the RAS/RAF/MEK/ERK signalling pathway that is frequently activated in human tumors, MEK1 is required for the transmission of growth-promoting signals from numerous receptor tyrosine kinases. Cobimetinib is used in combination with vemurafenib because the clinical benefit of a BRAF inhibitor is limited by intrinsic and acquired resistance. Reactivation of the MAPK pathway is a major contributor to treatment failure in BRAF-mutant melanomas, approximately ~80% of melanoma tumors becomes BRAF-inhibitor resistant due to reactivation of MAPK signalling. BRAF-inhibitor resistant tumor cells are sensitive to MEK inhibition, therefore cobimetinib and vemurafenib will result in dual inhibition of BRAF and its downstream target, MEK. Cobimetinib specifically binds to and inhibits the catalytic activity of MEK1, resulting in inhibition of extracellular signal-related kinase 2 (ERK2) phosphorylation and activation and decreased tumor cell proliferation. Cobimetinib and vemurafenib target two different kinases in the RAS/RAF/MEK/ERK pathway. Cobimetinib is used for the treatment of patients with unresectable or metastatic melanoma with a BRAF V600E or V600K mutation. Cobimetinib is used in combination with vemurafenib, a BRAF inhibitor. Cobimetinib is marketed under the trade name Cotellic.
Abiraterone acetate (trade name Zytiga) is a prodrug to the abiraterone, steroidal compound with antiandrogen activity and a 17 α-hydroxylase/C17,20-lyase (CYP17) inhibitor. It is indicated in combination with prednisone for the treatment of patients with metastatic castration-resistant prostate cancer. Abiraterone acetate is converted in vivo to abiraterone which inhibits CYP17, enzyme expressed in testicular, adrenal, and prostatic tumor tissues and required for androgen biosynthesis. Administration of this agent may suppress testosterone production by both the testes and the adrenals to castrate-range levels. Androgen sensitive prostatic carcinoma responds to treatment that decreases androgen levels. Androgen deprivation therapies, such as treatment with GnRH agonists or orchiectomy, decrease androgen production in the testes but do not affect androgen production by the adrenals or in the tumor.
Dabigatran (Pradaxa, Prazaxa) is an anticoagulant medication that can be taken by mouth. FDA approved on October 19, 2010. Dabigatran directly inhibits thrombin in a concentration-dependent, reversible, specific, and competitive manner which results in a prolongation of aPTT (partial thromboplastin time), ECT (Ecarin clotting time), and TT (thrombin time). It may increase INR but this laboratory parameter is relatively insensitive to the activity of dabigatran. Dabigatran is indicated for the prevention of venous thromboembolic events in patients who have undergone elective hip or knee replacement surgery (based on RE-NOVATE, RE-MODEL, and RE-MOBILIZE trials). In 2010, it was approved in the US and Canada for prevention of stroke and systemic embolism in patients with atrial fibrillation (approval based on the RE-LY trial). Contraindications: severe renal impairment (CrCL < 30 ml/min); haemorrhagic manifestations, bleeding diathesis or spontaneous or pharmacologic impairment of haemostasis; lesions at risk of clinically significant bleeding (e.g. extensive cerebral infarction (haemorrhagic or ischemic) in the last 6 months, active peptic ulcer disease); concomitant treatment with P-glycoprotein inhibitors (e.g. oral ketoconazole, verapamil); and those with known hypersensitivity to dabigatran, dabigatran etexilate or any ingredient used in the formulation or component of the container. As of December 2012, dabigatran is contraindicated in patients with mechanical prosthetic heart valves.
Dabigatran (Pradaxa, Prazaxa) is an anticoagulant medication that can be taken by mouth. FDA approved on October 19, 2010. Dabigatran directly inhibits thrombin in a concentration-dependent, reversible, specific, and competitive manner which results in a prolongation of aPTT (partial thromboplastin time), ECT (Ecarin clotting time), and TT (thrombin time). It may increase INR but this laboratory parameter is relatively insensitive to the activity of dabigatran. Dabigatran is indicated for the prevention of venous thromboembolic events in patients who have undergone elective hip or knee replacement surgery (based on RE-NOVATE, RE-MODEL, and RE-MOBILIZE trials). In 2010, it was approved in the US and Canada for prevention of stroke and systemic embolism in patients with atrial fibrillation (approval based on the RE-LY trial). Contraindications: severe renal impairment (CrCL < 30 ml/min); haemorrhagic manifestations, bleeding diathesis or spontaneous or pharmacologic impairment of haemostasis; lesions at risk of clinically significant bleeding (e.g. extensive cerebral infarction (haemorrhagic or ischemic) in the last 6 months, active peptic ulcer disease); concomitant treatment with P-glycoprotein inhibitors (e.g. oral ketoconazole, verapamil); and those with known hypersensitivity to dabigatran, dabigatran etexilate or any ingredient used in the formulation or component of the container. As of December 2012, dabigatran is contraindicated in patients with mechanical prosthetic heart valves.

Showing 111 - 120 of 422 results