U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 631 - 640 of 2052 results

Status:
US Previously Marketed
Source:
Sintrom by Geigy
(1957)
Source URL:
First approved in 1957
Source:
Sintrom by Geigy
Source URL:

Class (Stereo):
CHEMICAL (RACEMIC)



Acenocoumarol is mono-coumarin derivative with racemic mixture of R (+) and S (-) enantiomers. Acenocoumarol is structurally similar to vitamin K and is competitively able to inhibit the enzyme vitamin K-epoxide reductase. It exerts anticoagulant action by preventing the regeneration of reduced vitamin K by interfering with action of vitamin K epoxide reductase. Acenocoumarol is prescribed as the anticoagulant in various thromboembolic disorders.
Status:
US Previously Marketed
First approved in 1955

Class (Stereo):
CHEMICAL (ACHIRAL)

Conditions:

Potassium Aminosalicylate is the potassium salt form of aminosalicylic acid, an analog of aminobenzoic acid used to treat tuberculosis. There are two mechanisms responsible for aminosalicylic acid's bacteriostatic action against Mycobacterium tuberculosis. Firstly, aminosalicylic acid inhibits folic acid synthesis (without potentiation with antifolic compounds). The binding of para-aminobenzoic acid to pteridine synthetase acts as the first step in the folic acid synthesis. Aminosalicylic acid binds pteridine synthetase with greater affinity than para-aminobenzoic acid, effectively inhibiting the synthesis of folic acid. As bacteria are unable to use external sources of folic acid, cell growth and multiplication slow. Secondly, aminosalicylic acid may inhibit the synthesis of the cell wall component, mycobactin, thus reducing iron uptake by M. tuberculosis. Specifically, Potassium Aminosalicylate is used to treat active drug-resistant tuberculosis together with other antituberculosis medications. Potassium Aminosalicylate t has also been used as a second line agent to sulfasalazine in people with inflammatory bowel disease such as ulcerative colitis and Crohn's disease.
Status:
US Previously Marketed
Source:
Synatan by Irwin, Neisler (Mallinckrodt)
(1955)
Source URL:
First approved in 1955
Source:
Synatan by Irwin, Neisler (Mallinckrodt)
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)


DEXTROAMPHETAMINE TANNATE is a salt of dextroamphetamine, amphetamine enantiomer. It is used as CNS stimulant in the treatment of attention deficit hyperactivity disorder.
Status:
US Previously Marketed
Source:
METATENSIN #2 by SANOFI AVENTIS US
(1982)
Source URL:
First approved in 1954

Class (Stereo):
CHEMICAL (ABSOLUTE)



Reserpine is an alkaloid, isolated from the Rauwolfia serpentina plant and developed by Ciba pharma. Reserpine was approved by FDA for the treatment of hypertension and psychotic disorders. The drug exerts its effect by blocking two vesicular monoamine transporters, VMAT1 and VMAT2. The blockade results in vesicles that lose their ability to store neurotransmitter molecules. Neurotransmitters, thus retained in cytosol, are then neutralized by MAO.
Status:
US Previously Marketed
First approved in 1954

Class (Stereo):
CHEMICAL (ABSOLUTE)



Digoxin is a cardiac glycoside derived from the purple foxglove flower. In 1785, the English chemist, botanist, and physician Sir William Withering published his findings that Digitalis purpurea could be used to treat cardiac dropsy (congestive heart failure; CHF). Digoxin has been in use for many years, but was not approved by the FDA for treatment of heart failure (HF) until the late 1990s. Another FDA indication for digoxin is atrial fibrillation (AF). Digoxin also has numerous off-label uses, such as in fetal tachycardia, supra-ventricular tachycardia, cor pulmonale, and pulmonary hypertension. Digitoxin inhibits the Na-K-ATPase membrane pump, resulting in an increase in intracellular sodium and calcium concentrations. Increased intracellular concentrations of calcium may promote activation of contractile proteins (e.g., actin, myosin). Digoxin also has Para sympathomimetic properties. By increasing vagal tone in the sinoatrial and atrioventricular (AV) nodes, it slows the heart rate and AV nodal conduction.
Status:
US Previously Marketed
Source:
Neodrol by Pfizer
(1953)
Source URL:
First approved in 1953
Source:
Neodrol by Pfizer
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)


STANOLONE, also known as dihydrotestosterone, is a potent androgenic metabolite of testosterone and anabolic agent for systemic use. It may be used as a replacement of male sex steroids in men who have androgen deficiency, for example as a result of the loss of both testes, and also the treatment of certain rare forms of aplastic anemia which are or may be responsive to anabolic androgens.
Quercetin is a unique bioflavonoid that has been extensively studied by researchers over the past 30 years. Quercetin, the most abundant of the flavonoids (the name comes from the Latin –quercetum, meaning oak forest, quercus oak) consists of 3 rings and 5 hydroxyl groups. Quercetin is a member of the class of flavonoids called flavonoles and forms the backbone for many other flavonoids including the citrus flavonoids like rutin, hesperidins, Naringenin and tangeritin. It is widely distributed in the plant kingdom in rinds and barks. The best described property of Quercetin is its ability to act as antioxidant. Quercetin seems to be the most powerful flavonoids for protecting the body against reactive oxygen species, produced during the normal oxygen metabolism or are induced by exogenous damage [9, 10]. One of the most important mechanisms and the sequence of events by which free radicals interfere with the cellular functions seem to be the lipid peroxidation leading eventually the cell death. To protect this cellular death to happen from reactive oxygen species, living organisms have developed antioxidant line of defense systems [11]. These include enzymatic and non-enzymatic antioxidants that keep in check ROS/RNS level and repair oxidative cellular damage. The major enzymes, constituting the first line of defence, directly involved in the neutralization of ROS/RNS are: superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) The second line of defence is represented by radical scavenging antioxidants such as vitamin C, vitamin A and plant phytochemicals including quercetin that inhibit the oxidation chain initiation and prevent chain propagation. This may also include the termination of a chain by the reaction of two radicals. The repair and de novo enzymes act as the third line of defence by repairing damage and reconstituting membranes. These include lipases, proteases, DNA repair enzymes and transferases. Quercetin is a specific quinone reductase 2 (QR2) inhibitor, an enzyme (along with the human QR1 homolog) which catalyzes metabolism of toxic quinolines. Inhibition of QR2 in plasmodium may potentially cause lethal oxidative stress. The inhibition of antioxidant activity in plasmodium may contribute to killing the malaria causing parasites.
Propantheline is an antimuscarinic agent used for the treatment of excessive sweating (hyperhidrosis), cramps or spasms of the stomach, intestines (gut) or bladder, and involuntary urination (enuresis). It can also be used to control the symptoms of irritable bowel syndrome and similar conditions. Propantheline is one of a group of antispasmodic medications which work by blocking the action of the chemical messenger acetylcholine, which is produced by nerve cells, to muscarinic receptors present in various smooth muscular tissues, in places such as the gut, bladder, and eye. Normally, the binding of acetylcholine induces involuntary smooth muscular contractions. Varying degrees of drying of salivary secretions may occur as well as decreased sweating. Ophthalmic side effects include blurred vision, mydriasis, cycloplegia, and increased ocular tension. Other reported adverse reactions include urinary hesitancy and retention, tachycardia, palpitations, loss of the sense of taste, headache, nervousness, mental confusion, drowsiness, weakness, dizziness, insomnia, nausea, vomiting, constipation, bloated feeling, impotence, suppression of lactation, and allergic reactions or drug idiosyncrasies including anaphylaxis, urticaria and other dermal manifestations.
Status:
US Previously Marketed
First approved in 1952

Class (Stereo):
CHEMICAL (ACHIRAL)



Phenindione is an anticoagulant which functions as a Vitamin K antagonist. The drug was discontinued in USA, but still in use worldwide.
Status:
US Previously Marketed
First approved in 1950

Class (Stereo):
CHEMICAL (ACHIRAL)


Diethylcarbamazine is used in humans, dogs and cats for the treatment of parasitic infections, including pulmonary eosinophilia, loiasis, and lymphatic filariasis. The exact mechanism of its action is unknown, however some studies showed the involvment of inducible nitric-oxide synthase and the cyclooxygenase pathway. Although there is no information on whether the drug is marketed in the USA and Europe, it is currently used in India.