Stereochemistry | ACHIRAL |
Molecular Formula | C15H10O7.2H2O |
Molecular Weight | 338.2663 |
Optical Activity | NONE |
Defined Stereocenters | 0 / 0 |
E/Z Centers | 0 |
Charge | 0 |
SHOW SMILES / InChI
SMILES
O.O.OC1=CC(O)=C2C(=O)C(O)=C(OC2=C1)C3=CC(O)=C(O)C=C3
InChI
InChIKey=GMGIWEZSKCNYSW-UHFFFAOYSA-N
InChI=1S/C15H10O7.2H2O/c16-7-4-10(19)12-11(5-7)22-15(14(21)13(12)20)6-1-2-8(17)9(18)3-6;;/h1-5,16-19,21H;2*1H2
Molecular Formula | H2O |
Molecular Weight | 18.0153 |
Charge | 0 |
Count |
MOL RATIO
2 MOL RATIO (average) |
Stereochemistry | ACHIRAL |
Additional Stereochemistry | No |
Defined Stereocenters | 0 / 0 |
E/Z Centers | 0 |
Optical Activity | NONE |
Molecular Formula | C15H10O7 |
Molecular Weight | 302.2357 |
Charge | 0 |
Count |
MOL RATIO
1 MOL RATIO (average) |
Stereochemistry | ACHIRAL |
Additional Stereochemistry | No |
Defined Stereocenters | 0 / 0 |
E/Z Centers | 0 |
Optical Activity | NONE |
Quercetin is a unique bioflavonoid that has been extensively studied by researchers over the past 30 years. Quercetin, the most abundant of the flavonoids (the name comes from the Latin –quercetum, meaning oak forest, quercus oak) consists of 3 rings and 5 hydroxyl groups. Quercetin is a member of the class of flavonoids called flavonoles and forms the backbone for many other flavonoids including the citrus flavonoids like rutin, hesperidins, Naringenin and tangeritin. It is widely distributed in the plant kingdom in rinds and barks. The best described property of Quercetin is its ability to act as antioxidant. Quercetin seems to be the most powerful flavonoids for protecting the body against reactive oxygen species, produced during the normal oxygen metabolism or are induced by exogenous damage [9, 10]. One of the most important mechanisms and the sequence of events by which free radicals interfere with the cellular functions seem to be the lipid peroxidation leading eventually the cell death. To protect this cellular death to happen from reactive oxygen species, living organisms have developed antioxidant line of defense systems [11]. These include enzymatic and non-enzymatic antioxidants that keep in check ROS/RNS level and repair oxidative cellular damage. The major enzymes, constituting the first line of defence, directly involved in the neutralization of ROS/RNS are: superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) The second line of defence is represented by radical scavenging antioxidants such as vitamin C, vitamin A and plant phytochemicals including quercetin that inhibit the oxidation chain initiation and prevent chain propagation. This may also include the termination of a chain by the reaction of two radicals. The repair and de novo enzymes act as the third line of defence by repairing damage and reconstituting membranes. These include lipases, proteases, DNA repair enzymes and transferases. Quercetin is a specific quinone reductase 2 (QR2) inhibitor, an enzyme (along with the human QR1 homolog) which catalyzes metabolism of toxic quinolines. Inhibition of QR2 in plasmodium may potentially cause lethal oxidative stress. The inhibition of antioxidant activity in plasmodium may contribute to killing the malaria causing parasites.
CNS Activity
Originator
Approval Year
Overview
CYP3A4 | CYP2C9 | CYP2D6 | hERG |
---|---|---|---|
OverviewOther
Other Inhibitor | Other Substrate | Other Inducer |
---|---|---|
Drug as perpetrator
Drug as victim
Sourcing
PubMed
Patents
Sample Use Guides
COPD Subjects will be asked to avoid quercetin rich diet for one week and then asked to take one of the following for 1 week
Quercetin 500 mg/350 mg of vitamin C and 10 mg niacin
Quercetin 1000 mg/350 mg of vitamin C and 10 mg niacin
Quercetin 2000 mg/350 mg of vitamin C and 10 mg niacin
Route of Administration:
Oral