{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
US Approved Rx
(2010)
Source:
ANDA078548
(2010)
Source URL:
First approved in 1997
Source:
ALDARA by BAUSCH
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Imiquimod is an immune response modifier that acts as a toll-like receptor 7 agonist. Imiquimod is commonly used topically to treat warts on the skin of the genital and anal areas. Imiquimod does not cure warts, and new warts may appear during treatment. Imiquimod does not fight the viruses that cause warts directly, however, it does help to relieve and control wart production. It is not used on warts inside the vagina, penis, or rectum. Imiquimod is also used to treat a skin condition of the face and scalp called actinic keratoses. Imiquimod can also be used to treat certain types of skin cancer called superficial basal cell carcinoma. Imiquimod is particularly useful on areas where surgery or other treatments may be difficult, complicated or otherwise undesirable, especially the face and lower legs. Imiquimod's mechanism of action is via stimulation of innate and acquired immune responses, which ultimately leads to inflammatory cell infiltration within the field of drug application followed by apoptosis of diseased tissue. Imiquimod does not have direct antiviral activity. Studies of mice show that imiquimod may induce cytokines, including interferon-alpha (IFNA) as well as several IFNA genes (IFNA1, IFNA2, IFNA5, IFNA6, and IFNA8) as well as the IFNB gene. Imiquimod also induced the expression of interleukin (IL)-6, IL-8, and tumor necrosis factor alpha genes. In the treatment of basal cell carcinoma, Imiquimod appears to act as a toll-like receptor-7 agonist, and is thought to exert its anti-tumor effect via modification of the immune response and stimulation of apoptosis in BCC cells. In treating basal cell carcinoma it may increase the infiltration of lymphocytes, dendritic cells, and macrophages into the tumor lesion. Imiquimod is used for the topical treatment of clinically typical, nonhyperkeratotic, nonhypertrophic actinic keratoses on the face or scalp in immunocompetent adults. Also indicated for the treatment of external genital and perianal warts/condyloma acuminata in individuals 12 years old and above.
Status:
US Approved Rx
(2024)
Source:
NDA216482
(2024)
Source URL:
First approved in 1995
Source:
NDA050722
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Mycophenolic acid (MPA) possesses antibacterial, antifungal, antiviral, immunosuppressive and anticancer properties. Mycophenolic acid (MPA) is a fungal metabolite that was initially discovered by Bartolomeo Gosio in 1893 as an antibiotic against anthrax bacillus, Bacillus anthracis. It is an uncompetitive and reversible inhibitor of inosine monophosphate dehydrogenase (IMPDH), and therefore inhibits the de novo pathway of guanosine nucleotide synthesis without incorporation to DNA. It was approved under the brand name Myfortic for the prophylaxis of organ rejection in adult patients receiving a kidney transplant and is indicated for the prophylaxis of organ rejection in pediatric patients 5 years of age and older who are at least 6 months post kidney transplant. Myfortic is to be used in combination with cyclosporine and corticosteroids.
Status:
US Approved Rx
(2009)
Source:
ANDA078629
(2009)
Source URL:
First approved in 1993
Source:
KYTRIL by ROCHE
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Granisetron is a selective inhibitor of type 3 serotonergic (5-HT3) receptors. The drug is structurally and pharmacologically related to ondansetron, another selective inhibitor of 5-HT3 receptors. The serontonin 5-HT3 receptors are located on the nerve terminals of the vagus in the periphery, and centrally in the chemoreceptor trigger zone of the area postrema. The temporal relationship between the emetogenic action of emetogenic drugs and the release of serotonin, as well as the efficacy of antiemetic agents suggest that chemotherapeutic agents release serotonin from the enterochromaffin cells of the small intestine by causing degenerative changes in the GI tract. The serotonin then stimulates the vagal and splanchnic nerve receptors that project to the medullary vomiting center, as well as the 5-HT3 receptors in the area postrema, thus initiating the vomiting reflex, causing nausea and vomiting. Granisetron is a potent, selective antagonist of 5-HT3 receptors. The antiemetic activity of the drug is brought about through the inhibition of 5-HT3 receptors present both centrally (medullary chemoreceptor zone) and peripherally (GI tract). This inhibition of 5-HT3 receptors in turn inhibits the visceral afferent stimulation of the vomiting center, likely indirectly at the level of the area postrema, as well as through direct inhibition of serotonin activity within the area postrema and the chemoreceptor trigger zone. Granisetron is used for the prevention of nausea and vomiting associated with initial and repeat courses of emetogenic cancer therapy (including high dose cisplatin), postoperation, and radiation (including total body irradiation and daily fractionated abdominal radiation).
Status:
US Approved Rx
(2003)
Source:
ANDA076226
(2003)
Source URL:
First approved in 1993
Source:
DEMADEX by ROCHE
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Torasemide is a pyridine-sulfonylurea type loop diuretic mainly used for the treatment of edema associated with congestive heart failure, renal disease, or hepatic disease. Also for the treatment of hypertension alone or in combination with other antihypertensive agents. It is also used at low doses for the management of hypertension. It is marketed under the brand name Demadex. Torasemide inhibits the Na+/K+/2Cl--carrier system (via interference of the chloride binding site) in the lumen of the thick ascending portion of the loop of Henle, resulting in a decrease in reabsorption of sodium and chloride. This results in an increase in the rate of delivery of tubular fluid and electrolytes to the distal sites of hydrogen and potassium ion secretion, while plasma volume contraction increases aldosterone production. The increased delivery and high aldosterone levels promote sodium reabsorption at the distal tubules, and by increasing the delivery of sodium to the distal renal tubule, torasemide indirectly increases potassium excretion via the sodium-potassium exchange mechanism. Torasemide's effects in other segments of the nephron have not been demonstrated. Thus torasemide increases the urinary excretion of sodium, chloride, and water, but it does not significantly alter glomerular filtration rate, renal plasma flow, or acid-base balance. Torasemide's effects as a antihypertensive are due to its diuretic actions. By reducing extracellular and plasma fluid volume, blood pressure is reduced temporarily, and cardiac output also decreases.
Status:
US Approved Rx
(2000)
Source:
NDA021077
(2000)
Source URL:
First approved in 1990
Source:
CUTIVATE by FOUGERA PHARMS
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Fluticasone propionate, a medium-potency synthetic corticosteroid, is used topically to relieve inflammatory and pruritic symptoms of dermatoses and psoriasis, intranasally to manage symptoms of allergic and non-allergic rhinitis, and orally for the treatment of asthma. Fluticasone proprionate is marketed under several different brand names such as Flonase®. Fluticasone propionate is also available as a combination product of azelastine hydrochloride and fluticasone propionate called Dymista™. Dymista™ is indicated in patients over 12 years old for symptomatic relief of seasonal allergic rhinitis. Fluticasone propionate binds to the glucocorticoid receptor. Unbound corticosteroids cross the membranes of cells such as mast cells and eosinophils, binding with high affinity to glucocorticoid receptors (GR). The results include alteration of transcription and protein synthesis, a decreased release of leukocytic acid hydrolases, reduction in fibroblast proliferation, prevention of macrophage accumulation at inflamed sites, reduction of collagen deposition, interference with leukocyte adhesion to the capillary wall, reduction of capillary membrane permeability and subsequent edema, reduction of complement components, inhibition of histamine and kinin release, and interference with the formation of scar tissue. In the management of asthma, the glucocorticoid receptor complexes down-regulates proinflammatory mediators such as interleukin-(IL)-1, 3, and 5, and up-regulates anti-inflammatory mediators such as IkappaB [inhibitory molecule for nuclear factor kappaB1], IL-10, and IL-12. The antiinflammatory actions of corticosteroids are also thought to involve inhibition of cytosolic phospholipase A2 (through activation of lipocortin-1 (annexin)) which controls the biosynthesis of potent mediators of inflammation such as prostaglandins and leukotrienes.
Status:
US Approved Rx
(2016)
Source:
ANDA204068
(2016)
Source URL:
First approved in 1989
Source:
PRILOSEC by ASTRAZENECA
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Conditions:
Esomeprazole strontium is a proton pump inhibitor. It suppresses gastric acid secretion by specific inhibition H+/K+ ATPase in the gastric parietal cell. The S- and R-isomers of omeprazole are protonated and converted in the acidic compartment of the parietal cell forming the active inhibitor, the achiral sulphenamide. By acting specifically on the proton pump, esomeprazole blocks the final step in acid production, thus reducing gastric acidity. The drug is indicated for the treatment of gastroesophageal reflux disease, reduction the risk of NSAID-associated gastric ulcer, eradication of H.pylori, and pathological hypersecretory conditions.
Status:
US Approved Rx
(2020)
Source:
ANDA211364
(2020)
Source URL:
First approved in 1989
Source:
NDA019906
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Clomipramine is an antidepressant drug which was approved by FDA for the treatment of Obsessive-Compulsive Disorder. The exact mechanism of its action is unknown, however it is supposed that it may exert its effect by inhibiting serotonin reuptake.
Status:
US Approved Rx
(2020)
Source:
ANDA210986
(2020)
Source URL:
First approved in 1988
Source:
VOLTAREN by NOVARTIS
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Diclofenac is a nonsteroidal anti-inflammatory drug (NSAID) of the phenylacetic acid class with anti-inflammatory, analgesic, and antipyretic properties. Contrary to the action of many traditional NSAIDs, diclofenac inhibits cyclooxygenase (COX)-2 enzyme with greater potency than it does COX-1. In addition diclofenac can inhibit the thromboxane-prostanoid receptor, affect arachidonic acid release and uptake, inhibit lipoxygenase enzymes, and activate the nitric oxide-cGMP antinociceptive pathway. Other novel mechanisms of action may include the inhibition of substrate P, inhibition of peroxisome proliferator activated receptor gamma (PPARgamma), blockage of acid-sensing ion channels, alteration of interleukin-6 production, and inhibition of N-methyl-D-aspartate (NMDA) receptor hyperalgesia. Similar to other NSAIDs, diclofenac is associated with serious dose-dependent gastrointestinal, cardiovascular, and renal adverse effects. Since its introduction in 1973, a number of different diclofenac-containing drug products have been developed with the goal of improving efficacy, tolerability, and patient convenience. Delayed- and extended-release forms of diclofenac sodium were initially developed with the goal of improving the safety profile of diclofenac and providing convenient, once-daily dosing for the treatment of patients with chronic pain. New drug products consisting of diclofenac potassium salt were associated with faster absorption and rapid onset of pain relief. These include diclofenac potassium immediate-release tablets, diclofenac potassium liquid-filled soft gel capsules, and diclofenac potassium powder for oral solution. The advent of topical formulations of diclofenac enabled local treatment of pain and inflammation while minimizing systemic absorption of diclofenac. SoluMatrix diclofenac, consisting of submicron particles of diclofenac free acid and a proprietary combination of excipients, was developed to provide analgesic efficacy at reduced doses associated with lower systemic absorption. The drug's likely impact on the Asian vulture population was widely reported. The dramatic mortality was attributed largely to renal failure caused by exposure to diclofenac in livestock carcasses on which the birds fed. Although not the most endearing species, vultures are important environmental scavengers and, since veterinary use of diclofenac was stopped in the region in 2006, the decline in vulture numbers has slowed.
Status:
US Approved Rx
(2022)
Source:
ANDA214653
(2022)
Source URL:
First approved in 1978
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Conditions:
Verapamil is a FDA approved drug used to treat high blood pressure and to control chest pain. Verapamil is an L-type calcium channel blocker that also has antiarrythmic activity. The R-enantiomer is more effective at reducing blood pressure compared to the S-enantiomer. However, the S-enantiomer is 20 times more potent than the R-enantiomer at prolonging the PR interval in treating arrhythmias. Verapamil inhibits voltage-dependent calcium channels. Specifically, its effect on L-type calcium channels in the heart causes a reduction in ionotropy and chronotropy, thuis reducing heart rate and blood pressure. Verapamil's mechanism of effect in cluster headache is thought to be linked to its calcium-channel blocker effect, but which channel subtypes are involved is presently not known.
Status:
US Approved Rx
(1987)
Source:
ANDA070923
(1987)
Source URL:
First approved in 1974
Source:
CATAPRES by BOEHRINGER INGELHEIM
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Clonidine is a centrally acting α2 adrenergic agonist and imidazoline receptor agonist used to treat high blood pressure, attention deficit hyperactivity disorder, anxiety disorders, tic disorders, withdrawal (from either alcohol, opioids, or smoking), migraine, menopausal flushing, diarrhea, and certain pain conditions. Clonidine treats high blood pressure by stimulating α2 receptors in the brain, which decreases peripheral vascular resistance, lowering blood pressure. It has specificity towards the presynaptic α2 receptors in the vasomotor center in the brainstem. This binding decreases presynaptic calcium levels, thus inhibiting the release of norepinephrine (NE). It has also been proposed that the antihypertensive effect of clonidine is due to agonism on the I1 receptor (imidazoline receptor), which mediates the sympatho-inhibitory actions of imidazolines to lower blood pressure. Clonidines mechanism of action in the treatment of ADHD is to increase noradrenergic tone in the prefrontal cortex (PFC) directly by binding to postsynaptic α2A adrenergic receptors and indirectly by increasing norepinephrine input from the locus coeruleus. Clonidine indicated in the treatment of hypertension. Clonidine hydrochloride tablets may be employed alone or concomitantly with other antihypertensive agents. The US Food and Drug Administration (FDA) has approved clonidine for the treatment of attention deficit hyperactivity disorder (ADHD), under the trade name of Kapvay alone or with stimulants in 2010, for pediatric patients aged 6–17 years.