U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 381 - 390 of 1079 results

Lonidamine is a derivative of the indazole-3-carboxylic acid, with limited antineoplastic activity as a single agent but with exceptional potential in modulating the activities of conventional chemotherapeutic agents such as N-mustard alkylating agents and anthracyclines as well as hyperthermia, radiation therapy and photodynamic therapy. The most critical property of Lonidamine is its selective activity against a broad range of tumors with little to no effect on normal tissues provided that doses are below a threshold level of ~400 mg/m^2 (oral or i.v. doses). Selective effects of Lonidamine on tumors compared to other potential targets probably result from the dependence of most tumors on glycolytic metabolism, but the exact mechanism of specificity is still not fully known. Current evidence indicates that Lonidamine inhibits lactate export by the proton-linked monocarboxylate transporter(s) (MCT) and pyruvate uptake into mitochondria via the mitochondrial pyruvate carrier (MPC), whereas inhibition of respiration involves both diminished mitochondrial uptake of pyruvate via the MPC as well as inhibition of the mitochondrial electron-transport chain at Complex II and perhaps also Complex I, in both instances at the ubiquinone reduction step. There is also evidence that the drug may indirectly inhibit hexokinase as well as possibly other glycolytic and pentose shunt enzymes as a result of cytosolic acidification. Key problems that remain to be addressed are the production of Lonidamine under GMP conditions since Angelini Pharmaceuticals in Rome, Italy, the sole commercial source of this drug, stopped producing it in 2006. In addition, utilization of Lonidamine in the US requires IND approval by the FDA, which has previously been granted for a number of clinical trials. Finally, even though LND is a potent enhancer of the activity of a number of potent anti-cancer agents, potentially less toxic (and patentable) “targeted-tumor agents” are replacing traditional chemotherapy. Another problem remaining to be addressed is the limited solubility of Lonidamine at neutral pH. Oral delivery has led to variable results; more soluble derivatives that can be administered by the intravenous administration are needed to accurately control the dosing schedules.
Status:
Possibly Marketed Outside US
Source:
NCT04308317: Phase 4 Interventional Unknown status Corona Virus Disease 2019,COVID-19
(2020)
Source URL:

Class (Stereo):
CHEMICAL (RACEMIC)



Tetrandrine, isolated from the root of Stephania tetrandra S Moore, is a traditional Chinese clinical agent for silicosis, autoimmune disorders, inflammatory pulmonary diseases, cardiovascular diseases and hypertension. Tetrandrine is a potent MDR-reversing agent and is an ABCB1/ABCC1 inhibitor. Tetrandrine (CBT-1) is being developed by CBA Pharma, as an adjunctive therapy to chemotherapy in various cancer types with multiple drug resistance (MDR), including acute myelogenous leukemia , Breast, Non-Hodgkin’s Lymphoma, Hodgkin’s disease, Non-Small Cell Lung Cancer, Multiple Myeloma, Gallbladder, Pancreatic, Gastrointestinal Tract, Small Cell Lung Cancer, Bladder, Head & Neck, and Sarcoma.
Status:
Possibly Marketed Outside US
Source:
ORKEDIA by Mitsubishi Tanabe Pharma Corporation
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Evocalcet (MT-4580, KHK7580) is an allosteric calcium-sensing receptor agonist. Evocalcet directly acts on calcium receptors on parathyroid cells to suppress synthesis and secretion of parathyroid hormone (PTH), and it consequently decreases serum PTH and serum calcium. ORKEDIA® TABLETS (generic name: evocalcet, code name: KHK7580) has been listed on the National Health Insurance (NHI) Drug Price List and launched for the treatment of secondary hyperparathyroidism in patients on maintenance dialysis in Japan.
Status:
Possibly Marketed Outside US
Source:
Baygon by Gahan, J.B.|Wilson, H.H.|Smith, C.N.
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Propoxur (Baygon) is a carbamate insecticide that has recently attracted considerable attention as a possible treatment option for addressing the bedbug epidemic. Propoxur is a non-systemic insecticide with a fast knockdown and long residual effect used against the turf, forestry, and household pests and fleas. The generally accepted mechanism of toxicity for propoxur involves the inhibition of cholinesterase. Propoxur is also used in pest control for other domestic animals, Anopheles mosquitoes, ants, gypsy moths, and other agricultural pests. It can also be used as a molluscicide. Several U.S. states have petitioned the Environmental Protection Agency (EPA) to use propoxur against bedbug infestations, but the EPA has been reluctant to approve indoor use because of its potential toxicity to children after chronic exposure.
Status:
Possibly Marketed Outside US
Source:
NCT03231709: Phase 4 Interventional Completed Type 2 Diabetes Mellitus
(2017)
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Trelagliptin (SYR-472), a novel dipeptidyl peptidase-4 inhibitor used for the treatment of type 2 diabetes mellitus. Trelagliptin (as the salt Trelagliptin succinate) was approved for use in Japan in March 2015. Takeda, the company that developed Trelagliptin, chose to not get approval for the drug in the USA and EU.
Status:
Possibly Marketed Outside US
Source:
LUSEFI by Taisho Pharmaceutical
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Luseogliflozin (TS-071), a derivative of a novel scaffold, C-phenyl 1-thio-D-glucitol, exhibited potent sodium-dependent glucose cotransporter (SGLT) 2 inhibition activity. Luseogliflozin exhibits a blood glucose lowering effect, excellent urinary glucose excretion properties, and promising pharmacokinetics profiles in animals. It showed good metabolic stability toward cryo-preserved human hepatic clearance, have acceptable human pharmacokinetics properties. Luseogliflozin [Lusefi(®) (Japan)] was developed by Taisho Pharmaceutical for the treatment of patients with type 2 diabetes mellitus. The drug has received its first global approval for this indication in Japan, either as monotherapy or in combination with other antihyperglycaemic agents.
Status:
Possibly Marketed Outside US
Source:
Corasore by Loubatieres, A.
Source URL:

Class (Stereo):
CHEMICAL (RACEMIC)


Conditions:

Heptaminol is an amino alcohol that has been used as a myocardial stimulant and vasodilator and to relieve bronchospasm. Its most common therapeutic use is in orthostatic hypotension. The mechanism of heptaminol's therapeutic actions is not well understood although it has been suggested to affect catecholamine release or calcium metabolism.
Status:
Possibly Marketed Outside US
Source:
NCT03130634: Phase 4 Interventional Completed Metastatic Colorectal Cancer
(2016)
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Silymarin, a plant-derived flavonoid from the plant Silybum marianum, is considered the most potential drug to treat almost all kind of liver diseases, particularly alcoholic liver disease, acute and chronic viral hepatitis and toxins-mediated liver dysfunctions. The main component of the silymarin complex is silybin, synonymous with silibinin, sometimes incorrectly called silybinin, which is a mixture of two diastereomers A and B in approximately 1:1 proportion. The drug possess hepatoprotective and antioxidant activity. The hepatoprotective effect is due to stimulation of synthesis of structural and functional proteins and phospholipids, as well as acceleration of the regeneration of hepatocytes. Antioxidant effect is determined by interaction of bioflavones with free radicals in the liver and its detoxication. In such manner the process of peroxidation of the lipids is interrupted and further liver destruction is prevented. Side effect is a mild laxative effect has occasionally been observed.
Status:
Possibly Marketed Outside US
Source:
NCT02307396: Phase 4 Interventional Completed Schizophrenia
(2015)
Source URL:

Class (Stereo):
CHEMICAL (RACEMIC)



Sulpiride is an atypical antipsychotic drug (although some texts have referred to it as a typical antipsychotic) of the benzamide class used mainly in the treatment of psychosis associated with schizophrenia and major depressive disorder, and sometimes used in low dosage to treat anxiety and mild depression. Sulpiride is commonly used in Europe, Russia and Japan. Sulpiride is a selective antagonist at dopamine D2 and D3 receptors. This action dominates in doses exceeding 600 mg daily. In doses of 600 to 1,600 mg sulpiride shows mild sedating and antipsychotic activity. Its antipsychotic potency compared to chlorpromazine is only 0.2 (1/5). In low doses (in particular 50 to 200 mg daily) its prominent feature is antagonism of presynaptic inhibitory dopamine receptors accounting for some antidepressant activity and a stimulating effect. Therefore, it is in these doses used as a second line antidepressant. Racemic and L-sulpiride significantly decreased stimulated serum gastrin concentration, but they did not affect fasting serum gastrin or basal and stimulated gastric acidity. D-sulpiride significantly decreased gastric acid secretion, without affecting serum gastrin levels.
A potent, selective and orally active receptor antagonist of leukotriene D4, verlukast (MK-571), was discovered and developed from a styrylquinoline lead structure based on a hypothetical model of the leukotriene D4 receptor. MK-571 blocks the action of LTD4 in animals and man, and is effective in a number of animal models of antigen-induced bronchoconstriction at plasma concentration at or below 2 ug/mL. MK-571 also blocks antigen-induced asthmatic responses in man. MK-571 is a potent and selective leukotriene D4 (LTD4) antagonist and ABCC multidrug resistance protein 1(MRP1) inhibitor. The cysteinyl leukotrienes (CysLTs), LTC4, LTD4, and LTE4, mediate their actions through two distinct G-protein coupled receptors. LTD4 is the preferred ligand for the CysLT1 receptor, whereas LTC4 and LTD4 bind with approximately equal affinity to the CysLT2 receptor. MK-571 is a selective, orally active CysLT1 receptor antagonist. It blocks the binding of LTD4, but not LTC4, to human and guinea pig lung membranes with Ki values of 0.22 nM and 2.1 nM, respectively. MK-571 effectively blocks LTD4 activation of recombinant human and mouse CysLT1 receptors but is ineffective at blocking LTC4 or LTD4 activation of the recombinant human or murine CysLT2 receptors.