U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 1 - 10 of 11 results

Osilodrostat (INN, USAN) (developmental code name LCI-699) is an orally active, non-steroidal corticosteroid biosynthesis inhibitor which is under development by Novartis for the treatment of Cushing's syndrome and pituitary ACTH hypersecretion (a specific subtype of Cushing's syndrome). Osilodrostat specifically acts as a potent and selective inhibitor of aldosterone synthase (CYP11B2) and at higher dosages of 11β-hydroxylase (CYP11B1). Osilodrostat decreases plasma and urinary aldosterone levels and rapidly corrects hypokalemia, in patients with primary aldosteronism and hypertension. At doses ≥1 mg o.d. Osilodrostat markedly increases 11-deoxycortisol plasma levels and blunts ACTH-stimulated cortisol release in ≈20% of patients, consistent with the inhibition of CYP11B1. In patients with resistant hypertension, Osilodrostat produces a non-significant reduction in blood pressure, possibly due to the increase in 11-deoxycortisol levels and the stimulation of the hypothalamic-pituitary-adrenal feedback axis. Because of the lack of selectivity, poor antihypertensive effect, and short half-life, the development of Osilodrostat as antihypertensive was halted. As of 2017, Osilodrostat is in phase III and phase II clinical trials for the treatment of pituitary ACTH hypersecretion and Cushing's syndrome, respectively.
Etomidate (AMIDATE®) is an imidazole derivative anesthetic and hypnotic with little effect on blood gases, ventilation, or the cardiovascular system. It is intended for the induction of general anesthesia by intravenous injection. Etomidate (AMIDATE®) is also indicated for the supplementation of subpotent anesthetic agents, such as nitrous oxide in oxygen, during maintenance of anesthesia for short operative procedures such as dilation and curettage or cervical conization. It also produces a unique toxicity among anesthetic drugs - inhibition of adrenal steroid synthesis that far outlasts its hypnotic action and that may reduce survival of critically ill patients. The major molecular targets mediating anesthetic effects of etomidate (AMIDATE®) in the central nervous system are specific gamma-aminobutyric acid (GABA) type A receptor subtypes. The R(+) isomer of etomidate is 10 times more potent than its S(-) isomer at potentiating GABA-A receptor activity.
Status:
First marketed in 1921

Class (Stereo):
CHEMICAL (ABSOLUTE)



Glucose is a sugar with the molecular formula C6H12O6. The D-isomer (D-glucose), also known as dextrose, occurs widely in nature, but the L-isomer (L-glucose) does not. Glucose is made during photosynthesis from water and carbon dioxide, using energy from sunlight. The reverse of the photosynthesis reaction, which releases this energy, is a very important source of power for cellular respiration. Glucose is stored as a polymer, in plants as starch and in animals as glycogen, for times when the organism will need it. Glucose circulates in the blood of animals as blood sugar. Glucose can be obtained by hydrolysis of carbohydrates such as milk, cane sugar, maltose, cellulose, glycogen etc. It is however, manufactured by hydrolysis of cornstarch by steaming and diluting acid. Glucose is the human body's key source of energy, through aerobic respiration, providing about 3.75 kilocalories (16 kilojoules) of food energy per gram. Breakdown of carbohydrates (e.g. starch) yields mono- and disaccharides, most of which is glucose. Use of glucose as an energy source in cells is by either aerobic respiration, anaerobic respiration, or fermentation. All of these processes follow from an earlier metabolic pathway known as glycolysis. The insulin reaction, and other mechanisms, regulate the concentration of glucose in the blood. Glucose supplies almost all the energy for the brain, so its availability influences psychological processes. When glucose is low, psychological processes requiring mental effort (e.g., self-control, effortful decision-making) are impaired. Ingested glucose is absorbed directly into the blood from the intestine and results in a rapid increase in the blood glucose level. Glucose is used to manage hypoglycemia and for intravenous feeding. Nausea may occur after ingesting glucose, but this also may be an effect of the hypoglycemia which is present just prior to ingestion. Other adverse effects include increased blood glucose, injection site leakage of fluid (extravasation), injection site inflammation, and bleeding in the brain.
Status:
US Previously Marketed
Source:
Elipten by Ciba
(1960)
Source URL:
First approved in 1960
Source:
Elipten by Ciba
Source URL:

Class (Stereo):
CHEMICAL (RACEMIC)



Aminoglutethimide, marketing as Cytadren has been used in the treatment of advanced breast and prostate cancer. It was formerly used for its weak anticonvulsant properties. Cytadren is indicated for the suppression of adrenal function in selected patients with Cushing’s syndrome. Morning levels of plasma cortisol in patients with adrenal carcinoma and ectopic ACTH producing tumors were reduced on the average to about one half of the pretreatment levels, and in patients with adrenal hyperplasia to about two thirds of the pretreatment levels, during 1-3 months of therapy with Cytadren. Data available from the few patients with adrenal adenoma suggest similar reductions in plasma cortisol levels. Measurements of plasma cortisol showed reductions to at least 50% of baseline or to normal levels in one third or more of the patients studied, depending on diagnostic groups and time of measurement. Because Cytadren does not affect the underlying disease process, it is used primarily as an interim measure until more definitive therapy such as surgery can be undertaken or in cases where such therapy is not appropriate. Only small numbers of patients have been treated for longer than 3 months. A decreased effect or “escape phenomenon” seems to occur more frequently in patients with pituitary dependent Cushing’s syndrome, probably because of increasing ACTH levels in response to decreasing glucocorticoid levels. Cytadren blocks several other steps in steroid synthesis, including the C-11, C-18, and C-21 hydroxylations and the hydroxylations required for the aromatization of androgens to estrogens, mediated through the binding of Cytadren to cytochrome P-450 complexes. A decrease in adrenal secretion of cortisol is followed by an increased secretion of pituitary adrenocorticotropic hormone (ACTH), which will overcome the blockade of adrenocortical steroid synthesis by Cytadren. The compensatory increase in ACTH secretion can be suppressed by the simultaneous administration of hydrocortisone. Since Cytadren increases the rate of metabolism of dexamethasone but not that of hydrocortisone, the latter is preferred as the adrenal glucocorticoid replacement. Although Cytadren inhibits the synthesis of thyroxine by the thyroid gland, the compensatory increase in thyroid-stimulating hormone (TSH) is frequently of sufficient magnitude to overcome the inhibition of thyroid synthesis due to Cytadren. In spite of an increase in TSH, Cytadren has not been associated with increased prolactin secretion. At low doses, aminogluthethimide is only an effective inhibitor of aromatase (Cytochrome P450 11A1), but at higher doses, it effectively blocks Cytochrome P450 11A1 (P450scc) as well. Citadel was marketed previously as an anticonvulsant but was withdrawn from marketing for that indication in 1966 because of the effects on the adrenal gland.
Metomidate is a non-barbiturate imidazole which produces a sleepy condition of 20-60 minutes duration without substantial analgesia. Since the beginning of 1997 the use of the hypnotic drug metomidate (Hypnodil) in swine is nor longer allowed. This ban caused a substantial therapeutic deficit for anesthesia in swine. 11C-metomidate may be used with positron emission tomography which can differentiate adrenocortical from nonadrenocortical tumors and a suspected adrenocortical cancer may be characterized and staged before surgery. Metomidate hydrochloride is for the sedation and anesthesia of aquarium and non-food fish species. Aquacalm has been granted Indexed status by the FDA for this purpose.
Osilodrostat (INN, USAN) (developmental code name LCI-699) is an orally active, non-steroidal corticosteroid biosynthesis inhibitor which is under development by Novartis for the treatment of Cushing's syndrome and pituitary ACTH hypersecretion (a specific subtype of Cushing's syndrome). Osilodrostat specifically acts as a potent and selective inhibitor of aldosterone synthase (CYP11B2) and at higher dosages of 11β-hydroxylase (CYP11B1). Osilodrostat decreases plasma and urinary aldosterone levels and rapidly corrects hypokalemia, in patients with primary aldosteronism and hypertension. At doses ≥1 mg o.d. Osilodrostat markedly increases 11-deoxycortisol plasma levels and blunts ACTH-stimulated cortisol release in ≈20% of patients, consistent with the inhibition of CYP11B1. In patients with resistant hypertension, Osilodrostat produces a non-significant reduction in blood pressure, possibly due to the increase in 11-deoxycortisol levels and the stimulation of the hypothalamic-pituitary-adrenal feedback axis. Because of the lack of selectivity, poor antihypertensive effect, and short half-life, the development of Osilodrostat as antihypertensive was halted. As of 2017, Osilodrostat is in phase III and phase II clinical trials for the treatment of pituitary ACTH hypersecretion and Cushing's syndrome, respectively.
Etomidate (AMIDATE®) is an imidazole derivative anesthetic and hypnotic with little effect on blood gases, ventilation, or the cardiovascular system. It is intended for the induction of general anesthesia by intravenous injection. Etomidate (AMIDATE®) is also indicated for the supplementation of subpotent anesthetic agents, such as nitrous oxide in oxygen, during maintenance of anesthesia for short operative procedures such as dilation and curettage or cervical conization. It also produces a unique toxicity among anesthetic drugs - inhibition of adrenal steroid synthesis that far outlasts its hypnotic action and that may reduce survival of critically ill patients. The major molecular targets mediating anesthetic effects of etomidate (AMIDATE®) in the central nervous system are specific gamma-aminobutyric acid (GABA) type A receptor subtypes. The R(+) isomer of etomidate is 10 times more potent than its S(-) isomer at potentiating GABA-A receptor activity.
Etomidate (AMIDATE®) is an imidazole derivative anesthetic and hypnotic with little effect on blood gases, ventilation, or the cardiovascular system. It is intended for the induction of general anesthesia by intravenous injection. Etomidate (AMIDATE®) is also indicated for the supplementation of subpotent anesthetic agents, such as nitrous oxide in oxygen, during maintenance of anesthesia for short operative procedures such as dilation and curettage or cervical conization. It also produces a unique toxicity among anesthetic drugs - inhibition of adrenal steroid synthesis that far outlasts its hypnotic action and that may reduce survival of critically ill patients. The major molecular targets mediating anesthetic effects of etomidate (AMIDATE®) in the central nervous system are specific gamma-aminobutyric acid (GABA) type A receptor subtypes. The R(+) isomer of etomidate is 10 times more potent than its S(-) isomer at potentiating GABA-A receptor activity.
Status:
First marketed in 1921

Class (Stereo):
CHEMICAL (ABSOLUTE)



Glucose is a sugar with the molecular formula C6H12O6. The D-isomer (D-glucose), also known as dextrose, occurs widely in nature, but the L-isomer (L-glucose) does not. Glucose is made during photosynthesis from water and carbon dioxide, using energy from sunlight. The reverse of the photosynthesis reaction, which releases this energy, is a very important source of power for cellular respiration. Glucose is stored as a polymer, in plants as starch and in animals as glycogen, for times when the organism will need it. Glucose circulates in the blood of animals as blood sugar. Glucose can be obtained by hydrolysis of carbohydrates such as milk, cane sugar, maltose, cellulose, glycogen etc. It is however, manufactured by hydrolysis of cornstarch by steaming and diluting acid. Glucose is the human body's key source of energy, through aerobic respiration, providing about 3.75 kilocalories (16 kilojoules) of food energy per gram. Breakdown of carbohydrates (e.g. starch) yields mono- and disaccharides, most of which is glucose. Use of glucose as an energy source in cells is by either aerobic respiration, anaerobic respiration, or fermentation. All of these processes follow from an earlier metabolic pathway known as glycolysis. The insulin reaction, and other mechanisms, regulate the concentration of glucose in the blood. Glucose supplies almost all the energy for the brain, so its availability influences psychological processes. When glucose is low, psychological processes requiring mental effort (e.g., self-control, effortful decision-making) are impaired. Ingested glucose is absorbed directly into the blood from the intestine and results in a rapid increase in the blood glucose level. Glucose is used to manage hypoglycemia and for intravenous feeding. Nausea may occur after ingesting glucose, but this also may be an effect of the hypoglycemia which is present just prior to ingestion. Other adverse effects include increased blood glucose, injection site leakage of fluid (extravasation), injection site inflammation, and bleeding in the brain.
Metomidate is a non-barbiturate imidazole which produces a sleepy condition of 20-60 minutes duration without substantial analgesia. Since the beginning of 1997 the use of the hypnotic drug metomidate (Hypnodil) in swine is nor longer allowed. This ban caused a substantial therapeutic deficit for anesthesia in swine. 11C-metomidate may be used with positron emission tomography which can differentiate adrenocortical from nonadrenocortical tumors and a suspected adrenocortical cancer may be characterized and staged before surgery. Metomidate hydrochloride is for the sedation and anesthesia of aquarium and non-food fish species. Aquacalm has been granted Indexed status by the FDA for this purpose.

Showing 1 - 10 of 11 results