{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
US Approved Rx
(2020)
Source:
NDA213411
(2020)
Source URL:
First approved in 2020
Source:
NDA213411
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
TUCATINIB (ONT-380 or ARRY-380) is an orally active, reversible and selective small-molecule HER2 inhibitor invented by Array and licensed to Cascadian Therapeutics (previously named Oncothyreon) for development, manufacturing and commercialization. HER2, a growth factor receptor that is over-expressed in multiple cancers, including breast, ovarian, and stomach cancer. HER2 mediates cell growth, differentiation and survival, and tumors that overexpress HER2 are more aggressive and historically have been associated with poorer overall survival compared with HER2-negative cancers. ONT-380 is highly active as a single agent and in combination with both chemotherapy and Herceptin® (trastuzumab) in xenograft models of HER2+ breast cancer, including models of CNS metastases that were refractory to Tykerb® (lapatinib) or neratinib treatment. In a Phase 1 single agent clinical study, ONT-380 administered orally twice a day was well tolerated and demonstrated anti-tumor activity in heavily pre-treated HER2+ breast cancer patients with metastatic disease. Based on the strength of these preclinical and clinical trials, ONT-380 is advancing in one Phase 2 and three Phase 1b combination trials in patients with metastatic breast cancer. A second study reported the CNS activity of ONT-380 in combination with either T-DM1 or trastuzumab or capecitabine. Patients with brain metastases assessable for response were included in the combined analysis. Responses and clinical benefit in the CNS were reported with the three combinations tested, supporting future development of the drug for this particular indication.
Status:
US Approved Rx
(2020)
Source:
NDA213969
(2020)
Source URL:
First approved in 2020
Source:
NDA213969
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Lonafarnib is a well-characterized, late-stage, orally active inhibitor of farnesyl transferase, an enzyme involved in modification of proteins through a process called prenylation. It is Investigated for use/treatment in Progeria, Cancer, Hepatitis D. Lonafarnib completely inhibits Rheb prenylation and phosphorylation of S6 ribosomal protein in cell culture, indicating a lack of alternative Rheb prenylation. Other groups have demonstrated that inhibition of protein synthesis via inactivation of eukaryotic elongation factor (eEF2) could be an alternate mechanism of lonafarnib induced growth inhibition that is independent of RAS/p70S6K eEF. Adverse effects included fatigue, diarrhea, dyspnea and neutropenia and respiratory insufficiency.
Status:
US Approved Rx
(2020)
Source:
NDA213189
(2020)
Source URL:
First approved in 2020
Source:
NDA213189
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
KX-01 is a dual inhibitor of Src kinase and tubulin polymerization. KX01 promotes the induction of p53, G2/M arrest of proliferating cell populations and subsequent apoptosis via the stimulation of Caspase-3 and PARP cleavage. The drug was developed by Kinex Pharmaceuticals and reached phase II of clinical trials for the treatment of Castration-Resistant Prostate Cancer and Actinic Keratosis. KX-01 demonstrated good in vitro pofile against different cancer cell lines with IC50 in nanomolar range.
Status:
US Approved Rx
(2019)
Source:
NDA212018
(2019)
Source URL:
First approved in 2019
Source:
NDA212018
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Erdafitinib (JNJ-42756493) is a potent and selective orally bioavailable, pan fibroblast growth factor receptor (FGFR) inhibitor with potential antineoplastic activity. It was discovered in collaboration with Janssen Pharmaceutica, N.V. from a partnership which commenced in June 2008. Astex’s FGFr inhibitor program originated from a collaboration initiated in 2005 with the Cancer Research UK Drug Discovery Group at the Newcastle Cancer Centre (Newcastle University UK), and Cancer Research Technology Limited. JNJ42756493 is currently being evaluated by Janssen in Phase 2 clinical trials in patients with urothelial cancer, advanced hepatocellular carcinoma, advanced non-small lung cancer, esophageal cancer or cholangiocarcinoma. JNJ-42756493 is a potent, oral pan-FGFR tyrosine kinase inhibitor with half-maximal inhibitory concentration values in the low nanomolar range for all members of the FGFR family (FGFR1 to FGFR4), with minimal activity on vascular endothelial growth factor receptor (VEGFR) kinases compared with FGFR kinases (approximately 20-fold potency difference). In vitro, the proliferation of cells treated with JNJ-42756493 is decreased, associated with increased apoptotic death and decreased cell survival. It is also in phase I trials for the treatment of advanced refractory solid tumors or advanced refractory hematologic cancer.
Status:
US Approved Rx
(2023)
Source:
NDA218550
(2023)
Source URL:
First approved in 2019
Source:
NDA212725
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Entrectinib (previously known as RXDX-101, NMS-E628) is an investigational drug, potent inhibitor of ALK, ROS1, and, importantly, of TRK family kinases, which shows promise for therapy of tumors bearing oncogenic forms of these proteins. Entrectinib (RXDX-101) is a selective inhibitor for all three Trk receptor tyrosine kinases encoded by the three NTRK genes, as well as the ROS1 and ALKreceptor tyrosine kinases.This investigational drug is active at low nanomolar concentrations, allowing for once-daily oral administration to patients whose tumors have been shown to have gene rearrangements in NTRK, ROS1, or ALK. Nerviano Medical Sciences, the original sponsor for entrectinib (formerly referred to as
NMS-1191372), initiated the first-in-human Phase 1 study ALKA-372-001 in Italy in October 2012. The study is currently ongoing in Italy. Entrectinib is currently being tested in a global phase 2 basket clinical trial called STARTRK-2. In the U.S., entrectinib has orphan drug designation and rare pediatric disease designation for the treatment of neuroblastoma and orphan drug designation for treatment of TrkA-, TrkB-, TrkC-, ROS1- and ALK-positive non-small cell lung cancer (NSCLC) and metastatic colorectal cancer (mCRC).
Status:
US Approved Rx
(2019)
Source:
NDA212327
(2019)
Source URL:
First approved in 2019
Source:
NDA212327
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Fedratinib (SAR-302503, TG-101348) is a selective small-molecule inhibitor of Janus kinase-2. Fedratinib demonstrated therapeutic efficacy in a murine model of myeloproliferative disease. Sanofi was developing Fedratinib for the treatment of myeloproliferative diseases and solid tumors.
The clinical development of fedratinib was terminated after reports of Wernicke's encephalopathy in myelofibrosis patients.
Status:
US Approved Rx
(2018)
Source:
NDA210854
(2018)
Source URL:
First approved in 2018
Source:
NDA210854
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Baloxavir or Baloxavir acid was developed by Shionogi and Co., Ltd as a selective inhibitor of the cap-dependent endonuclease (CEN) activity. CEN resides in the PA subunit of the influenza virus and mediates the critical "cap-snatching" step of viral RNA transcription. Thus Baloxavir can inhibit the influenza virus replication and now this drug is under investigation in clinical trial NCT04327791 (Combination Therapy With Baloxavir and Oseltamavir 1 for Hospitalized Patients With Influenza).
Status:
Investigational
Source:
INN:dordaviprone [INN]
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
TIC10 (NSC350625 or ONC201) is a small-molecule compound belongs to a chemical class known as imipridones, that possess a unique three-ring heterocycle with two substitutable basic amines. ONC201 has anti-proliferative and pro-apoptotic effects against a broad range of tumor cells but not normal cells. The mechanism of action of ONC201 involves engagement of PERK-independent activation of the integrated stress response, leading to tumor upregulation of DR5 and dual Akt/ERK inactivation, and consequent Foxo3a activation leading to upregulation of the death ligand TRAIL. The isomeric structure of TIC10/ONC201 is critical to its activity: anti-cancer activity is associated with the angular structure and not the linear isomer. Clinical trials are evaluating the single agent efficacy of ONC201 in multiple solid tumors and hematological malignancies and exploring alternative dosing regimens. Oncoceutics is developing ONC 201 as a potential therapy for treatment of p53-deficient cancers (including solid tumours).
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Ecadotril or sinorphan is the S-enantiomer of racemic acetorphan (racecadotril). It inhibits enkephalinase activity. Ecadotril was studied for the treatment of hypertension and heart failure, however, its development was discontinued.
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
8-Chloroadenosine-3',5'-cyclic-monophosphate (8-Cl-cAMP), an analog of c-AMP, is a novel antineoplastic agent. It has been shown to be effective against different human cancer cell lines modulating the cellular signal transduction pathway, thereby causing growth inhibition, cell differentiation, and apoptosis. 8-Cl-cAMP preferentially binds to the R2 subunit of protein kinase A (PKA) and induces rapid R2 up-regulation and eventual R1 subunit down-regulation. It has potent inhibitory effects on a wide variety of human cancer cell lines, with an IC50 ranging from 0.1 to 20 uM. The IC50 falls with the length of drug exposure. It can suppress c-myc and c-ras proto-oncogenes in vitro and in vivo. It was shown that 8-Cl-cAMP induces cell growth inhibition through AMP-activated protein kinase (AMPK) activation with p38 MAPK acting downstream of AMPK in this signaling pathway. 8-Cl-cAMP induced apoptosis, apparently through activation of the p38 MAPK pathway by inducing progressive phosphorylation of the p38 mitogen-activated protein kinase (MAPK), via activation of AMPK by its metabolite 8-Cl-adenosine. 8-Cl-cAMP does not significantly inhibit the growth of NIH 3T3 cells, rat kidney fibroblasts, mammary epithelial cells, or peripheral blood lymphocytes, nor does it inhibit the growth of parental cells whose progeny have been transformed. Such selectivity makes it an attractive candidate for cancer therapy suggesting that it should not cause the toxicity of conventional cytotoxic agents but should inhibit tumor growth. 8-Cl-cAMP has been evaluated in phase I/II clinical trials.