{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
Investigational
Source:
NCT03486223: Phase 2 Interventional Completed Diabetes Mellitus
(2018)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
GSK-2256294 is a potent, reversible, tight binding inhibitor of isolated recombinant human sEH (soluble epoxide hydrolase) (IC50 = 27 pM; t1/2 = 121 min) and displays potent inhibition against the rat (IC50 = 61 pM) and murine (IC50 = 189 pM) orthologs of sEH. GSK-2256294A also displays potent cellular inhibition (IC50 = 0.66 nM) of sEH in an assay developed using a cell line transfected with the human sEH enzyme. GSK-2256294 was well-tolerated and demonstrated sustained inhibition of sEH enzyme activity. These data support further investigation in patients with endothelial dysfunction or abnormal tissue repair, such as diabetes, wound healing or COPD. GSK-2256294 is in phase I clinical trials for the treatment of COPD.
Status:
Investigational
Source:
NCT00879905: Phase 1 Interventional Completed Advanced Solid Malignancies
(2009)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
HSP-990 is an oral Hsp90 inhibitor being developed by Novartis in a collaboration with Vernalis. It is also known by NVP-HSP990. HSP-990 is an inhibitor of human heat-shock protein 90 (Hsp90) with potential antineoplastic activity. Hsp-990 binds to and inhibits the activity of Hsp90, which may result in the proteasomal degradation of oncogenic client proteins, including HER2/ERBB2, and the inhibition of tumor cell proliferation. Hsp90, upregulated in a variety of tumor cells, is a molecular chaperone that plays a key role in the conformational maturation, stability and function of oncogenic signaling proteins, such as HER2/ERBB2, AKT, RAF1, BCR-ABL, and mutated p53, as well as many other molecules that are important in cell cycle regulation and/or immune responses.
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Donitriptan hydrochloride (F 11356) was developed by Pierre Fabre as a brain penetrant 5-HT1B/1D agonist. Which inhibits capsaicin-induced external carotid vasodilation and produces selective carotid vasoconstriction in various animal species. In January 2001, donitriptan had completed phase I trials for migraine and was scheduled to enter phase II development, but before development in phase II, this drug was discontinued.
Status:
Investigational
Source:
NCT01538420: Phase 1 Interventional Completed Healthy
(2012)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
GLPG-0492, an orally available selective androgen receptor modulator (SARM) was tested in a Phase I Proof of Mechanism study to assess the effect on muscle function in healthy volunteers. A biomarker effect similar to that of Oxandrolone was observed, but the data were insufficient for Galapagos to pursue GLPG-0492 further in cachexia, and further development of the compound was discontinued. GLPG-0492 is currently under development for musculo-skeletal diseases such as sarcopenia and Duchenne muscular dystrophy.
Status:
Investigational
Source:
NCT02471196: Phase 2 Interventional Completed Alzheimer's Disease
(2015)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Juvantia Pharma and Orion developed ORM-12741, also known as ORM-10921, a novel selective antagonist of alpha-2C adrenoceptors for the treatment of depression and Alzheimer's disease. ORM-12741 participated in phase II clinical trial where was evaluated the safety and efficacy of the drug in patients with Alzheimer's disease. In spite of the successfully completed phase II, further study of the drug for this disease was discontinued. In addition, ORM-12741 participated in clinical trial phase II to prove the concept that this drug could prevent blood vessel spasms for Raynaud's phenomenon. Raynaud's phenomenon is a disorder of the digital blood vessels resulting in episodic impairment of blood flow. However, this study was terminated because of the recommendation by study Data and Safety Monitoring Committee to the sponsor following the interim analysis of 8 subjects.
Status:
Investigational
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
CPI-0610 is a small molecule inhibitor of the Bromodomain and Extra-Terminal (BET) family of proteins, with potential antineoplastic activity. Upon administration, the BET inhibitor CPI-0610 binds to the acetylated lysine recognition motifs on the bromodomain of BET proteins, thereby preventing the interaction between the BET proteins and acetylated histone peptides. This disrupts chromatin remodeling and gene expression. Prevention of the expression of certain growth-promoting genes may lead to an inhibition of tumor cell growth. CPI-0610 is currently being evaluated in three Phase 1 clinical trials in the U.S.
Status:
Investigational
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
GS-9820 (formerly CAL-120) is an oral, small molecule delta selective Phosphatidylinositol 3-kinases (PI3 kinase) inhibitor, a first in class compound, with greater than 200-fold selectivity in cell-based assays for the delta isoform as compared to other class isoforms. GS-9820 is designed to induce cancer cell death and inhibit signaling pathways associated with cancer cell dependence on the tumor microenvironment. GS-9820 is on the phase I of clinical trial, where has to be determined the appropriate dosing regimen of drug in subjects with lymphoid malignancies.
Status:
Investigational
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Omipalisib, also known as GSK2126458, is a small-molecule pyridylsulfonamide inhibitor of phosphatidylinositol 3-kinase (PI3K) with potential antineoplastic activity. Omipalisib (GSK2126458, GSK458) is a highly selective and potent inhibitor of p110α/β/δ/γ, mTORC1/2 with Ki of 0.019 nM/0.13 nM/0.024 nM/0.06 nM and 0.18 nM/0.3 nM in cell-free assays, respectively. It is also a low picomolar inhibitor of the common activating
mutants of p110a (E542K, E545K, and H1047R) found in
human cancer. Omipalisib (GSK2126458) binds to and inhibits PI3K in the PI3K/mTOR signaling pathway, which may trigger the translocation of cytosolic Bax to the mitochondrial outer membrane, increasing mitochondrial membrane permeability and inducing apoptotic cell death. Bax is a member of the proapoptotic Bcl2 family of proteins. PI3K, often overexpressed in cancer cells, plays a crucial role in tumor cell regulation and survival. GlaxoSmithKline (GSK) is developing omipalisib, a phosphoinositide 3-kinase/mammalian target of rapamycin (PI3K/mTOR) inhibitor as well as mTOR complex 1 and 2 inhibitor, for the potential oral treatment of cancer and idiopathic pulmonary fibrosis.
Status:
Investigational
Source:
NCT00942799: Phase 1 Interventional Completed Solid Tumors
(2009)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Genz-644282 is a non-camptothecin inhibitor of topoisomerase I with potential antineoplastic activity (IC50=1.2 nM). It was in clinical development for the treatment of the solid tumors but later was discontinued.
Status:
Investigational
Source:
NCT02106338: Phase 1 Interventional Completed Clostridium Difficile Infection
(2014)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
CRS-3123, also known as REP-3123, is a methionyl-tRNA synthetase inhibitor potentially for the treatment of enteric infections. CRS-3123 is in Phase 1 clinical development for the treatment of Clostridium difficile Infection (CDI). CRS-3123 is a small molecule protein synthesis inhibitor that acts on the novel target methionyl-tRNA synthetase (MetRS). REP-3123 has been shown to be active in vitro against clinical
isolates of C. difficile including epidemic strains such as B1/
NAP1/027; MIC values of REP-3123 for C. difficile are
typically 0.5 -- 1.0 mg/l. REP-3123 is also active against a range of clinically important aerobic Gram-positive bacteria
including methicillin-susceptible and -resistant Staphylococcus
aureus (MIC90 values of 0.06 and 0.25 mg/l, respectively),
Streptococcus pyogenes (MIC90 0.5 mg/l) and enterococci
(MIC90 =0.03 mg/l), but was not active against aerobic
Gram-negative bacteria such as Enterobacteriaceae and nonfermenting
bacilli (MIC values > 32 mg/l). CRS-3123 has numerous potential advantages over current CDI therapies. In addition to being highly potent against all clinical isolates of C. difficile tested, CRS-3123 has several desirable qualities for the treatment of CDI which include:
Narrow spectrum for C. difficile, which may substantially reduce the disruption of normal intestinal flora compared to current therapies;
Inhibition of toxin production, potentially leading to lower morbidity and mortality;
Inhibition of sporulation, potentially leading to lower rates of transmission and recurrence;
A novel mechanism of action, which means that its use will not compromise the utility of systemic antibiotics while maintaining activity against pre-existing resistance mechanisms.