{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
Investigational
Source:
NCT02303262: Phase 2 Interventional Completed Metastatic Leiomyosarcoma
(2015)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Mocetinostat is an rationally designed, orally available, Class 1-selective, small molecule, 2-aminobenzamide HDAC inhibitor with potential antineoplastic activity. Mocetinostat binds to and inhibits Class 1 isoforms of HDAC, specifically HDAC 1, 2 and 3, which may result in epigenetic changes in tumor cells and so tumor cell death; although the exact mechanism has yet to be defined, tumor cell death may occur through the induction of apoptosis, differentiation, cell cycle arrest, inhibition of DNA repair, upregulation of tumor suppressors, down regulation of growth factors, oxidative stress, and autophagy, among others. It is undergoing clinical trials for treatment of various cancers including bladder cancer, diffuse large B cell lymphoma, follicular lymphoma, myelodysplastic syndromes, non-small cell lung cancer. Fatigue, weight loss or anorexia were most common treatment-related adverse events.
Status:
Investigational
Source:
NCT00280631: Phase 1/Phase 2 Interventional Completed Myelodysplastic Syndrome (MDS)
(2006)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Ezatiostat (TLK199) [γ-glutamyl-S-(benzyl)cysteinyl-R-phenyl glycine diethyl ester] is an inhibitor of Glutathione S-transferase P1–1 (GSTπ). The drug is a peptidomimetic of GSH (glutathione), esterified to enhance cellular uptake and designed to bind to the “G-site” of GSTP1–1. Independent of catalysis inhibition, TLK199 also disrupts the protein:protein interaction site(s) between GSTP1–1 and JNK1. Telik Inc was developing TLK-199 for the potential prevention of myelosuppression in blood diseases, namely myelodysplastic syndrome.
Status:
Investigational
Source:
NCT00280631: Phase 1/Phase 2 Interventional Completed Myelodysplastic Syndrome (MDS)
(2006)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Ezatiostat (TLK199) [γ-glutamyl-S-(benzyl)cysteinyl-R-phenyl glycine diethyl ester] is an inhibitor of Glutathione S-transferase P1–1 (GSTπ). The drug is a peptidomimetic of GSH (glutathione), esterified to enhance cellular uptake and designed to bind to the “G-site” of GSTP1–1. Independent of catalysis inhibition, TLK199 also disrupts the protein:protein interaction site(s) between GSTP1–1 and JNK1. Telik Inc was developing TLK-199 for the potential prevention of myelosuppression in blood diseases, namely myelodysplastic syndrome.
Status:
Investigational
Source:
NCT00056459: Phase 3 Interventional Completed Colorectal Neoplasms
(2003)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Vatalanib a potent oral tyrosine kinase inhibitor with a selective range of molecular targets, has been extensively investigated and has shown promising results in patients with solid tumors in early trials. Vatalanib selectively inhibits the tyrosine kinase domains of vascular endothelial growth factor (VEGF) receptor tyrosine kinases (important enzymes in the formation of new blood vessels that contribute to tumor growth and metastasis), platelet-derived growth factor (PDGF) receptor, and c-KIT. The adverse effects of vatalanib appear similar to those of other VEGF inhibitors. In the CONFIRM trials, the most common side effects were high blood pressure, gastrointestinal upset (diarrhea, nausea, and vomiting), fatigue, and dizziness.
Status:
Investigational
Source:
NCT01928537: Phase 3 Interventional Completed Myelodysplastic Syndromes
(2013)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Rigosertib sodium (ON 01910.Na) is a small molecule inhibitor of critical pathways important in the growth and survival of cancer cells, being developed by Onconova Therapeutics ("Onconova") for the treatment of hematologic malignancies and solid tumors. Rigosertib (ON-01910) is a non-ATP-competitive inhibitor of PLK1 with IC50 of 9 nM in a cell-free assay. It shows 30-fold greater selectivity against Plk2 and no activity to Plk3. Extensive Phase I and Phase II studies with rigosertib have been conducted at leading institutions in the U.S. and abroad in more than 450 patients with solid tumors and hematological cancers, including MDS and AML. MDS and AML are blood disorders widely recognized as difficult to manage, with limited therapeutic options available for patients, especially those with drug-resistant disease. The multi-site Phase III ONTIME trial in MDS patients is under a Special Protocol Assessment (SPA) from the U.S. FDA and is being supported by an award from the Therapeutics Acceleration Program (TAP) of the Leukemia and Lymphoma Society (LLS). FDA has granted Orphan Drug Designation for the use of rigosertib in MDS. The clinical program in solid tumors is also advancing with initiation of the Phase II/III combination ONTRAC trial (ON 01910.Na TRial in Patients with Advanced Pancreatic Cancer) and Phase II single agent trial in ovarian cancer. In Japan, SymBio is developing rigosertib for the treatment of refractory/relapsed HR-MDS (IV form) and first-line LR-MDS (oral form).
Status:
Investigational
Source:
NCT02452008: Phase 2 Interventional Active, not recruiting Prostate Cancer
(2016)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Galunisertib is a potent inhibitor of TGF beta type 1 receptor. The drug is under clinical development for the treatment of different cancers: pancreatic, hepatocellular, breast, rectal, prostate etc. and reached phase 2/3 in patients with myelodysplastic syndromes.
Status:
Investigational
Source:
NCT00113893: Phase 2 Interventional Completed Bone Marrow Diseases
(2005)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Talmapimod is a p38 MAPK kinase inhibitor that inhibits p38 alpha with IC50 value of 9 nM which is 10-times lower then IC50 for p38 beta. Talmapimod was under clinical development for the treatment of Myelodysplastic Syndromes, Multiple Myeloma and Rheumatoid Arthritis (phase II), however, it seems to be discontinued as no longer presents in Janssen's pipeline.
Status:
Possibly Marketed Outside US
Source:
Starasid by Nippon Kayaku|Yamasa
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Cytarabine ocfosfate (commercial name: Starasid) is a prodrug having stearyl group attached to phosphoric acid at 5' position of arabinose moiety of cytosine arabinoside (Ara-C). This drug is given orally. The mode of action is in the inhibition of DNA synthesis after conversion to Ara-CTP as in Ara-C. The drug is metabolized in the liver, producing the intermediate metabolite, C-C3PCA which is converted to Ara-C gradually. This property results in the maintenance of relatively long time the blood Ara-C levels. This was proved to be active clinically against acute leukemia and MDS.
Status:
Possibly Marketed Outside US
Source:
Starasid by Nippon Kayaku|Yamasa
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Cytarabine ocfosfate (commercial name: Starasid) is a prodrug having stearyl group attached to phosphoric acid at 5' position of arabinose moiety of cytosine arabinoside (Ara-C). This drug is given orally. The mode of action is in the inhibition of DNA synthesis after conversion to Ara-CTP as in Ara-C. The drug is metabolized in the liver, producing the intermediate metabolite, C-C3PCA which is converted to Ara-C gradually. This property results in the maintenance of relatively long time the blood Ara-C levels. This was proved to be active clinically against acute leukemia and MDS.
Status:
Possibly Marketed Outside US
Source:
Starasid by Nippon Kayaku|Yamasa
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Cytarabine ocfosfate (commercial name: Starasid) is a prodrug having stearyl group attached to phosphoric acid at 5' position of arabinose moiety of cytosine arabinoside (Ara-C). This drug is given orally. The mode of action is in the inhibition of DNA synthesis after conversion to Ara-CTP as in Ara-C. The drug is metabolized in the liver, producing the intermediate metabolite, C-C3PCA which is converted to Ara-C gradually. This property results in the maintenance of relatively long time the blood Ara-C levels. This was proved to be active clinically against acute leukemia and MDS.