{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
US Previously Marketed
Source:
Narcotine by Merck
(1897)
Source URL:
First marketed in 1897
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Noscapine (also known as Narcotine, Nectodon, Nospen, Anarcotine and (archaic) Opiane) is a benzylisoquinoline alkaloid from plants of the poppy family, without painkilling properties. This agent is primarily used for its antitussive (cough-suppressing) effects. Noscapine is often used as an antitussive medication. A 2012 Dutch guideline, however, does not recommend its use for coughing. Noscapine can increase the effects of centrally sedating substances such as alcohol and hypnotics. Noscapine should not be taken in conjunction with warfarin as the anticoagulant effects of warfarin may be increased. Noscapine, and its synthetic derivatives called noscapinoids, are known to interact with microtubules and inhibit cancer cell proliferation. Mechanisms for its antitussive action are unknown, although animal studies have suggested central nervous system as a site of action. Furthermore, noscapine causes apoptosis in many cell types and has potent antitumor activity against solid murine lymphoid tumors (even when the drug was administered orally) and against human breast and bladder tumors implanted in nude mice. Because noscapine is water-soluble and absorbed after oral administration, its chemotherapeutic potential in human cancer merits thorough evaluation. Antifibrotic effect of noscapine based on novel mechanism, which it shows through EP2 prostaglandin E2 receptor-mediated activation of protein kinase A.
Status:
Possibly Marketed Outside US
Source:
M017
(2024)
Source URL:
First approved in 2024
Source:
M017
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Cucurbitacin B (CuB), an oxygenated tetracyclic triterpenoid compound extracted from Cucurbitaceae plant species, is a long-term anticancer agent by disruption of microtubule polymerization. Cucurbitacin B is a naturally occurring compound that is found abundantly in cucumbers and other vegetables, and it is known to exert anti-cancer activities (primarily via apoptosis-induction) in several human cancers. Cucurbitacin B also protects against cardiac hypertrophy through increasing the autophagy level in cardiomyocytes, which is associated with the inhibition of Akt/mTOR/FoxO3a signal axis. ACLY over-expression abrogated CuB's apoptotic effects in prostate cancer cells, confirming ACLY as a direct target of CuB. Thus, CuB harbors potent chemopreventive activity for prostate cancer, and we revealed a novel anti-tumor mechanism of CuB via inhibition of ACLY signaling in human cancer. It has being suggested that cucurbitacin B exerts an anticancer effect by inhibiting telomerase via down regulating both the hTERT and c-Myc expression in breast cancer cells.
Status:
Possibly Marketed Outside US
First approved in 2014
Source:
NADA141427
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Clodronate (also known as clodronic acid) is a drug used to treat a high level of calcium in the blood caused by changes in the body that happen with cancer. Clodronate is approved in some countries and is sold under trade trade name bonefos for oral use. Bonefos is indicated in the management of osteolytic lesions, hypercalcemia and bone pain associated with skeletal metastases in patients with carcinoma of the breast or multiple myeloma. Bonefos is also indicated for the maintenance of clinically acceptable serum calcium levels in patients with hypercalcemia of malignancy initially treated with an intravenous bisphosphonate. Bonefos forms complexes with divalent metal ions, and therefore simultaneous administration with food, antacids and mineral supplements may impair absorption. It was suggested, that the mechanism of action of clodronate was involved osteoclast apoptosis.
Status:
Possibly Marketed Outside US
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Masitinib is a new orally administered tyrosine kinase inhibitor that targets mast cells and macrophages, important cells for immunity, through inhibiting a limited number of kinases. Based on its unique mechanism of action, masitinib can be developed in a large number of conditions in oncology, in inflammatory diseases, and in certain diseases of the central nervous system. In oncology due to its immunotherapy effect, masitinib can have an effect on survival, alone or in combination with chemotherapy. Through its activity on mast cells and consequently the inhibition of the activation of the inflammatory process, masitinib can have an effect on the symptoms associated with some inflammatory and central nervous system diseases and the degeneration of these diseases. AB Science is developing masitinib in multiple sclerosis and alzheimer's disease. Masitinib targets kinases, including c-Kit, PDGFR, and Lyn. It is used in the treatment of mast cell tumors in animals, specifically dogs. Since its introduction in November 2008 it has been distributed under the commercial name Masivet. It has been available in Europe since the second part of 2009. In the USA it is distributed under the name Kinavet.
Status:
Possibly Marketed Outside US
Source:
THALOMID by Parker, H.G.|Low-Beer, A.de G.|Isaac, E.L.
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
(s)-Thalidomide is an enantiomer of immunomodulatory agent Thalidomide. Thalidomide enantiomers are converted to each other in vivo, and Thalidomide contains both left and right-handed isomers in equal amounts. (s)-Thalidomide has proven efficacy in multiple myeloma. s-thalidomide-induced apoptosis associated with increases in I-kB activity, downregulation of NF-kB activity and an increase in Bax: Bcl-2 ratio. In cells cultured with s-thalidomide, there was a four-fold downregulation of the NFkB gene that was associated with a significant decrease in its protein activity.
Status:
Possibly Marketed Outside US
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Conditions:
Carboquone (CQ) is an anticancer alkylating agent synthesized and developed by Arakawa et al. (Sankyo Co, Ltd.) in 1970, having chemical structure, 2,5-bis-(1-aziridinyl)-3-(2-carbamoyloxy-1-methoxyethyl)-6-methyl- 1,4- benzoquinone. The antitumor efficacies of CQ were reported as excellent, however, the side effects are considerably strong. Carboquone is used to treat various forms of cancer. It is indicated for the treatment of metastatic testicular tumors, metastatic ovarian tumors and advanced bladder cancer.
Status:
Investigational
Source:
NCT04401423: Phase 2 Interventional Completed COVID-19
(2021)
Source URL:
Class:
PROTEIN
Targets:
Conditions:
Angiotensin (1-7) [Ang 1-7] is a 7 amino acid peptide generated predominantly from Ang II by the action of Ang-converting enzyme 2. Ang 1-7 can act as a negative modulator of aldosterone secretion in vitro and in vivo. The endogenous heptapeptide angiotensin-(1-7) (Ang-(1-7)) is a RAS component that has a central role in the alternative axis. It is generated by the
cleavage of Ang-II by the action of the angiotensin converting
enzyme 2 (ACE 2) and acts via interaction with the
G-protein coupled receptor Mas. Angiotensin (1-7) induces vasorelaxation through release of NO and prostaglandins, perhaps through activation of a non-AT1, non-AT2 receptor, Mas. Counteracts the vasoconstrictive and proliferative effects of angiotensin II and stimulates vasopressin (anti-diuretic hormone) release in vivo. Clinical uses range from treatment of cardiovascular-related diseases,
ocular pathologies, metabolic dysfunctions, brain conditions and
degenerative diseases to applications in cell differentiation and
hematopoiesis, tumor therapy, acute lung injury, fibrosis, infection,
among others. Tarix Orphan is developing TXA127 for rare neuromuscular and connective tissue diseases. TXA127 is a pharmaceutical formulation of the naturally occurring peptide, Angiotensin (1-7). TXA127 has been effective in animal models of Duchenne muscular dystrophy (DMD), Limb-girdle muscular dystrophy (LGMD), congenital muscular dystrophy MDC1A, Marfan syndrome, and Dystrophic Epidermolysis Bullosa (DEB). FDA granted rare pediatric disease designation to TXA127 from Tarix to treat recessive dystrophic epidermolysis bullosa (RDEB). TXA127 has been granted orphan drug status by FDA as a treatment for pulmonary arterial hypertension, to enhance engraftment in patients receiving a stem cell transplant, and for Myelodysplastic Syndrome (MDS). Tarix Orphan has broad IP protection for TXA127 and Orphan Drug Designations (ODDs) have been granted for DMD LGMD and DEB in the U.S., and for DMD in Europe. Tarix Orphan aims to initiate a clinical trials for both DMD and DEB in early 2018 and has an active IND for a Phase II trial in DMD, as well as Fast Track designation for DMD.
Status:
US Approved Rx
(2019)
Source:
NDA212306
(2019)
Source URL:
First approved in 2019
Source:
NDA212306
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Selinexor (KPT-330) is a first in class XPO1 antagonist being evaluated in multiple later stage clinical trials in patients with relapsed and/or refractory hematological and solid tumor malignancies.
Status:
US Approved Rx
(2015)
Source:
NDA208462
(2015)
Source URL:
First approved in 2015
Source:
NDA208462
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Ixazomib (trade name Ninlaro) is a drug for the treatment of multiple myeloma in adults after at least one prior therapy, in combination with lenalidomide and dexamethasone. It is taken by mouth in form of capsules. Common side effects include diarrhea, constipation and low platelet count. Like the older bortezomib (which can only be given by injection), it acts as a proteasome inhibitor, has orphan drug status in the US and Europe. At therapeutic concentrations, ixazomib selectively and reversibly inhibits the protein proteasome subunit beta type-5 (PSMB5) with a dissociation half-life of 18 minutes. This mechanism is the same as of bortezomib, which has a much longer dissociation half-life of 110 minutes; the related drug carfilzomib, by contrast, blocks PSMB5 irreversibly. Proteasome subunits beta type-1 and type-2 are only inhibited at high concentrations reached in cell culture models. PSMB5 is part of the 20S proteasome complex and has enzymatic activity similar to chymotrypsin. It induces apoptosis, a type of programmed cell death, in various cancer cell lines. A synergistic effect of ixazomib and lenalidomide has been found in a large number of myeloma cell lines. The medication is taken orally as a prodrug, ixazomib citrate, which is a boronic ester; this ester rapidly hydrolyzes under physiological conditions to its biologically active form, ixazomib, a boronic acid. Absolute bioavailability is 58%, and highest blood plasma concentrations of ixazomib are reached after one hour. Plasma protein binding is 99%.
Status:
US Approved Rx
(2023)
Source:
ANDA215698
(2023)
Source URL:
First approved in 2008
Source:
NDA022311
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Plerixafor is a bicyclam molecule, which has been identified as a specific antagonist of CXCR4. It had originally been developed as an inhibitor of T-tropic human immunodeficiency virus, but later demonstrated to be an effective mobilizer of hematopoietic stem cells. Plerixafor was approved by FDA for autologous transplantation (in combination with granulocyte-colony stimulating factor) in patients with non-Hodgkin's lymphoma and multiple myeloma under the name Mozobil.