U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 141 - 150 of 240 results

Imipramine is a tricyclic antidepressant with general pharmacological properties similar to those of structurally related tricyclic antidepressant drugs such as amitriptyline and doxepin. A tertiary amine, imipramine inhibits the reuptake of serotonin more so than most secondary amine tricyclics, meaning that it blocks the reuptake of neurotransmitters serotonin and noradrenaline almost equally. With chronic use, imipramine also down-regulates cerebral cortical β-adrenergic receptors and sensitizes post-synaptic sertonergic receptors, which also contributes to increased serotonergic transmission. It takes approximately 2 - 4 weeks for antidepressants effects to occur. The onset of action may be longer, up to 8 weeks, in some individuals. It is also effective in migraine prophylaxis, but not in abortion of acute migraine attack. Imipramine works by inhibiting the neuronal reuptake of the neurotransmitters norepinephrine and serotonin. It binds the sodium-dependent serotonin transporter and sodium-dependent norepinephrine transporter preventing or reducing the reuptake of norepinephrine and serotonin by nerve cells. Depression has been linked to a lack of stimulation of the post-synaptic neuron by norepinephrine and serotonin. Slowing the reuptake of these neurotransmitters increases their concentration in the synaptic cleft, which is thought to contribute to relieving symptoms of depression. In addition to acutely inhibiting neurotransmitter re-uptake, imipramine causes down-regulation of cerebral cortical beta-adrenergic receptors and sensitization of post-synaptic serotonergic receptors with chronic use. This leads to enhanced serotonergic transmission. Used for relief of symptoms of depression and as temporary adjunctive therapy in reducing enuresis in children aged 6 years and older. May also be used to manage panic disorders, with or without agoraphobia, as a second line agent in ADHD, management of eating disorders, for short-term management of acute depressive episodes in bipolar disorder and schizophrenia, and for symptomatic treatment of postherpetic neuralgia.
Imipramine is a tricyclic antidepressant with general pharmacological properties similar to those of structurally related tricyclic antidepressant drugs such as amitriptyline and doxepin. A tertiary amine, imipramine inhibits the reuptake of serotonin more so than most secondary amine tricyclics, meaning that it blocks the reuptake of neurotransmitters serotonin and noradrenaline almost equally. With chronic use, imipramine also down-regulates cerebral cortical β-adrenergic receptors and sensitizes post-synaptic sertonergic receptors, which also contributes to increased serotonergic transmission. It takes approximately 2 - 4 weeks for antidepressants effects to occur. The onset of action may be longer, up to 8 weeks, in some individuals. It is also effective in migraine prophylaxis, but not in abortion of acute migraine attack. Imipramine works by inhibiting the neuronal reuptake of the neurotransmitters norepinephrine and serotonin. It binds the sodium-dependent serotonin transporter and sodium-dependent norepinephrine transporter preventing or reducing the reuptake of norepinephrine and serotonin by nerve cells. Depression has been linked to a lack of stimulation of the post-synaptic neuron by norepinephrine and serotonin. Slowing the reuptake of these neurotransmitters increases their concentration in the synaptic cleft, which is thought to contribute to relieving symptoms of depression. In addition to acutely inhibiting neurotransmitter re-uptake, imipramine causes down-regulation of cerebral cortical beta-adrenergic receptors and sensitization of post-synaptic serotonergic receptors with chronic use. This leads to enhanced serotonergic transmission. Used for relief of symptoms of depression and as temporary adjunctive therapy in reducing enuresis in children aged 6 years and older. May also be used to manage panic disorders, with or without agoraphobia, as a second line agent in ADHD, management of eating disorders, for short-term management of acute depressive episodes in bipolar disorder and schizophrenia, and for symptomatic treatment of postherpetic neuralgia.
Imipramine is a tricyclic antidepressant with general pharmacological properties similar to those of structurally related tricyclic antidepressant drugs such as amitriptyline and doxepin. A tertiary amine, imipramine inhibits the reuptake of serotonin more so than most secondary amine tricyclics, meaning that it blocks the reuptake of neurotransmitters serotonin and noradrenaline almost equally. With chronic use, imipramine also down-regulates cerebral cortical β-adrenergic receptors and sensitizes post-synaptic sertonergic receptors, which also contributes to increased serotonergic transmission. It takes approximately 2 - 4 weeks for antidepressants effects to occur. The onset of action may be longer, up to 8 weeks, in some individuals. It is also effective in migraine prophylaxis, but not in abortion of acute migraine attack. Imipramine works by inhibiting the neuronal reuptake of the neurotransmitters norepinephrine and serotonin. It binds the sodium-dependent serotonin transporter and sodium-dependent norepinephrine transporter preventing or reducing the reuptake of norepinephrine and serotonin by nerve cells. Depression has been linked to a lack of stimulation of the post-synaptic neuron by norepinephrine and serotonin. Slowing the reuptake of these neurotransmitters increases their concentration in the synaptic cleft, which is thought to contribute to relieving symptoms of depression. In addition to acutely inhibiting neurotransmitter re-uptake, imipramine causes down-regulation of cerebral cortical beta-adrenergic receptors and sensitization of post-synaptic serotonergic receptors with chronic use. This leads to enhanced serotonergic transmission. Used for relief of symptoms of depression and as temporary adjunctive therapy in reducing enuresis in children aged 6 years and older. May also be used to manage panic disorders, with or without agoraphobia, as a second line agent in ADHD, management of eating disorders, for short-term management of acute depressive episodes in bipolar disorder and schizophrenia, and for symptomatic treatment of postherpetic neuralgia.
Perphenazine is a relatively high potency phenothiazine that blocks dopamine 2 receptors predominantly, but also may possess antagonist actions at histamine 1 and cholinergic M1 and alpha 1 adrenergic receptors in the vomiting center leading to reduced nausea and vomiting. The drug was approved by FDA for the treatment of schizophrenia and control of severe nausea and vomiting (either alone or in combination with amitriptyline hydrochloride). Perphenazine is extensively hepatic to metabolites via sulfoxidation, hydroxylation, dealkylation, and glucuronidation; primarily metabolized by CYP2D6 to N-dealkylated perphenazine, perphenazine sulfoxide, and 7-hydroxyperphenazine (active metabolite with 70% of the activity of perphenazine) and excreted in the urine and feces.
Perphenazine is a relatively high potency phenothiazine that blocks dopamine 2 receptors predominantly, but also may possess antagonist actions at histamine 1 and cholinergic M1 and alpha 1 adrenergic receptors in the vomiting center leading to reduced nausea and vomiting. The drug was approved by FDA for the treatment of schizophrenia and control of severe nausea and vomiting (either alone or in combination with amitriptyline hydrochloride). Perphenazine is extensively hepatic to metabolites via sulfoxidation, hydroxylation, dealkylation, and glucuronidation; primarily metabolized by CYP2D6 to N-dealkylated perphenazine, perphenazine sulfoxide, and 7-hydroxyperphenazine (active metabolite with 70% of the activity of perphenazine) and excreted in the urine and feces.
Perphenazine is a relatively high potency phenothiazine that blocks dopamine 2 receptors predominantly, but also may possess antagonist actions at histamine 1 and cholinergic M1 and alpha 1 adrenergic receptors in the vomiting center leading to reduced nausea and vomiting. The drug was approved by FDA for the treatment of schizophrenia and control of severe nausea and vomiting (either alone or in combination with amitriptyline hydrochloride). Perphenazine is extensively hepatic to metabolites via sulfoxidation, hydroxylation, dealkylation, and glucuronidation; primarily metabolized by CYP2D6 to N-dealkylated perphenazine, perphenazine sulfoxide, and 7-hydroxyperphenazine (active metabolite with 70% of the activity of perphenazine) and excreted in the urine and feces.
Perphenazine is a relatively high potency phenothiazine that blocks dopamine 2 receptors predominantly, but also may possess antagonist actions at histamine 1 and cholinergic M1 and alpha 1 adrenergic receptors in the vomiting center leading to reduced nausea and vomiting. The drug was approved by FDA for the treatment of schizophrenia and control of severe nausea and vomiting (either alone or in combination with amitriptyline hydrochloride). Perphenazine is extensively hepatic to metabolites via sulfoxidation, hydroxylation, dealkylation, and glucuronidation; primarily metabolized by CYP2D6 to N-dealkylated perphenazine, perphenazine sulfoxide, and 7-hydroxyperphenazine (active metabolite with 70% of the activity of perphenazine) and excreted in the urine and feces.
Perphenazine is a relatively high potency phenothiazine that blocks dopamine 2 receptors predominantly, but also may possess antagonist actions at histamine 1 and cholinergic M1 and alpha 1 adrenergic receptors in the vomiting center leading to reduced nausea and vomiting. The drug was approved by FDA for the treatment of schizophrenia and control of severe nausea and vomiting (either alone or in combination with amitriptyline hydrochloride). Perphenazine is extensively hepatic to metabolites via sulfoxidation, hydroxylation, dealkylation, and glucuronidation; primarily metabolized by CYP2D6 to N-dealkylated perphenazine, perphenazine sulfoxide, and 7-hydroxyperphenazine (active metabolite with 70% of the activity of perphenazine) and excreted in the urine and feces.
Perphenazine is a relatively high potency phenothiazine that blocks dopamine 2 receptors predominantly, but also may possess antagonist actions at histamine 1 and cholinergic M1 and alpha 1 adrenergic receptors in the vomiting center leading to reduced nausea and vomiting. The drug was approved by FDA for the treatment of schizophrenia and control of severe nausea and vomiting (either alone or in combination with amitriptyline hydrochloride). Perphenazine is extensively hepatic to metabolites via sulfoxidation, hydroxylation, dealkylation, and glucuronidation; primarily metabolized by CYP2D6 to N-dealkylated perphenazine, perphenazine sulfoxide, and 7-hydroxyperphenazine (active metabolite with 70% of the activity of perphenazine) and excreted in the urine and feces.
Perphenazine is a relatively high potency phenothiazine that blocks dopamine 2 receptors predominantly, but also may possess antagonist actions at histamine 1 and cholinergic M1 and alpha 1 adrenergic receptors in the vomiting center leading to reduced nausea and vomiting. The drug was approved by FDA for the treatment of schizophrenia and control of severe nausea and vomiting (either alone or in combination with amitriptyline hydrochloride). Perphenazine is extensively hepatic to metabolites via sulfoxidation, hydroxylation, dealkylation, and glucuronidation; primarily metabolized by CYP2D6 to N-dealkylated perphenazine, perphenazine sulfoxide, and 7-hydroxyperphenazine (active metabolite with 70% of the activity of perphenazine) and excreted in the urine and feces.

Showing 141 - 150 of 240 results