U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 1 - 10 of 47 results

Linezolid is an antibiotic used for the treatment of infections caused by Gram-positive bacteria that are resistant to other antibiotics. Linezolid appears to be unique in that it blocks the initiation of protein production. Most common adverse reactions include diarrhea, vomiting, headache, nausea, and anemia. Linezolid has the potential for interaction with adrenergic and serotonergic agents. And with monoamine oxidase inhibitors because it’s nonselective inhibitor of monoamine oxidase.
Cefdinir is an extended-spectrum, semisynthetic cephalosporin, for oral administration. As with other cephalosporins, bactericidal activity of cefdinir results from inhibition of cell wall synthesis. Cefdinir is stable in the presence of some, but not all, β-lactamase enzymes. Cefdinir is indicated for the treatment of: Community-Acquired Pneumonia, Acute Exacerbations of Chronic Bronchitis, Acute Maxillary Sinusitis, Pharyngitis/Tonsillitis and Uncomplicated Skin and Skin Structure Infections. Side effects include diarrhea, vaginal infections or inflammation, nausea, headache, and abdominal pain. Concomitant administration of 300-mg cefdinir capsules with 30 mL Maalox® TC suspension reduces the rate (Cmax) and extent (AUC) of absorption by approximately 40%. As with other β-lactam antibiotics, probenecid inhibits the renal excretion of cefdinir.
Cefpodoxime is an orally administered, extended spectrum, semi-synthetic antibiotic of the cephalosporin class. Cefpodoxime is a bactericidal agent that acts by inhibition of bacterial cell wall synthesis. Cefpodoxime has activity in the presence of some beta-lactamases, both penicillinases and cephalosporinases, of Gram-negative and Gram-positive bacteria. Cefpodoxime is indicated for the treatment of patients with mild to moderate infections caused by susceptible strains of the designated microorganisms in the conditions: acute otitis media; pharyngitis and/or tonsillitis; community-acquired pneumonia; acute bacterial exacerbation of chronic bronchitis; gonorrhea; uncomplicated skin and skin structure infections; acute maxillary sinusitis and uncomplicated urinary tract infections (cystitis). Common adverse reactions include diarrhea, nausea, vaginal fungal infections, vulvovaginal infections, abdominal pain, headache. Concomitant administration of high doses of antacids (sodium bicarbonate and aluminum hydroxide) or H2 blockers reduces peak plasma levels by 24% to 42% and the extent of absorption by 27% to 32%, respectively. Oral anti-cholinergics (e.g., propantheline) delay peak plasma levels (47% increase in Tmax), but do not affect the extent of absorption (AUC). Probenecid: As with other beta-lactam antibiotics, renal excretion of cefpodoxime was inhibited by probenecid and resulted in an approximately 31% increase in AUC and 20% increase in peak cefpodoxime plasma levels.
Clarithromycin is an antibacterial drug which is used either in combination with lansoprazole and amoxicillin (Prevpac), in combination with omeprazole and amoxicillin (Omeclamox) or alone (Biaxin) for the treatment of broad range of infections. The drug exerts its action by binding to 23s rRNA (with nucleotides in domains II and V). The binding leads to the protein synthesis inhibition and the cell death.
Azithromycin is one of the world's best-selling antibiotics, used to treat or prevent certain bacterial infections: Acute bacterial exacerbations of chronic bronchitis in adults; acute bacterial sinusitis in adults; uncomplicated skin and skin structure infections in adults; urethritis and cervicitis in adults; genital ulcer disease in men; acute otitis media in pediatric patients; community-acquired pneumonia in adults and pediatric patients; pharyngitis/tonsillitis in adults and pediatric patients. Azithromycin should not be used in patients with pneumonia who are judged inappropriate for oral therapy because of moderate to severe illness or risk factors. A team of researchers at the Croatian pharmaceutical company Pliva, discovered azithromycin in 1980. It was patented in 1981. In 1986, Pliva and Pfizer signed a licensing agreement, which gave Pfizer exclusive rights for the sale of azithromycin in Western Europe and the United States. Pliva put its azithromycin on the market in Central and Eastern Europe under the brand name of Sumamed in 1988. Pfizer launched azithromycin under Pliva's license in other markets under the brand name Zithromax in 1991. Azithromycin is a semi-synthetic macrolide antibiotic of the azalide class. Like other macrolide antibiotics, azithromycin inhibits bacterial protein synthesis by binding to the 50S ribosomal subunit of the bacterial 70S ribosome. Binding inhibits peptidyl transferase activity and interferes with amino acid translocation during the process of translation. Its effects may be bacteriostatic or bactericidal depending of the organism and the drug concentration. Its long half-life, which enables once daily dosing and shorter administration durations, is a property distinct from other macrolides.
Piperacillin is a semisynthetic, broad-spectrum, ampicillin derived ureidopenicillin antibiotic which exerts bactericidal activity by inhibiting septum formation and cell wall synthesis of susceptible bacteria. Piperacillin sodium salt is used in combination with the β-lactamase inhibitor tazobactam sodium (ZOSYN®) for the treatment of patients with moderate to severe infections caused by susceptible bacteria.
Status:
Investigational
Source:
NCT00646958: Phase 2 Interventional Completed Infectious Skin Diseases
(2007)
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Radezolid (RX-1741) is a novel oxazolidinone antibiotic agent and is the first biaryloxazolidinone in clinical development. It is being developed by Rib-X Pharmaceuticals, Inc. for the treatment of serious multi-drug–resistant infections. Radezolid has completed two phase-II clinical trialsfor the treatment of community-acquired pneumonia; uncomplicated skin and skin structure infections. The mechanism of action for this drug seems to be an inhibition of 50S ribosomal subunit.
Faropenem medoxomil is an ester prodrug derivative of the beta-lactam antibiotic faropenem. The prodrug form of faropenem offers dramatically improved oral bioavailability and leads to higher systemic concentrations of the drug. Faropenem medoxomil is a broad-spectrum antibiotic that is highly resistant to beta-lactamase degradation. It was under development for the treatment of acute bacterial sinusitis, community-acquired pneumonia, acute exacerbation of chronic bronchitis, and uncomplicated skin and skin structure infections.
French pharmaceutical company Hoechst Marion Roussel (later Sanofi-Aventis) began phase II/III clinical trials of telithromycin (HMR-3647) in 1998. Telithromycin was approved by the European Commission in July 2001 and subsequently went on sale in October 2001. In the US, telithromycin received U.S. Food and Drug Administration (FDA) approval on April 1, 2004 Telithromycin is the first ketolide antibiotic to enter clinical use and is sold under the brand name of Ketek. After significant controversy regarding safety and research fraud, the US Food and Drug Administration sharply curtailed the approved uses of the drug in 2007. Telithromycin is a semi-synthetic erythromycin derivative. It is created by substituting a ketogroup for the cladinose sugar and adding a carbamate ring in the lactone ring. An alkyl-aryl moiety is attached to this carbamate ring. Furthermore, the carbon at position 6 has been methylated, as is the case in clarithromycin, to achieve better acid-stability. For the treatment of Pneumococcal infection, acute sinusitis, acute bacterial tonsillitis, acute bronchitis and bronchiolitis, lower respiratory tract infection and lobar (pneumococcal) pneumonia. KETEK tablets contain telithromycin, a semisynthetic antibacterial in the ketolide class for oral administration. Telithromycin blocks protein synthesis by binding to domains II and V of 23S rRNA of the 50S ribosomal subunit. By binding at domain II, telithromycin retains activity against gram-positive cocci (e.g., Streptococcus pneumoniae) in the presence of resistance mediated by methylases (erm genes) that alter the domain V binding site of telithromycin. Telithromycin may also inhibit the assembly of nascent ribosomal units.
Gemifloxacin is an oral broad-spectrum quinolone antibacterial agent used in the treatment of acute bacterial exacerbation of chronic bronchitis and mild-to-moderate pneumonia. Gemifloxacin mesylate is marketed under the brand name Factive, indicated for the treatment of bacterial infection caused by susceptible strains such as S. pneumoniae, H. influenzae, H. parainfluenzae, or M. catarrhalis, S. pneumoniae (including multi-drug resistant strains [MDRSP]), M. pneumoniae, C. pneumoniae, or K. pneumoniae. Gemifloxacin has in vitro activity against a wide range of Gram-negative and Grampositive microorganisms. Gemifloxacin is bactericidal with minimum bactericidal concentrations (MBCs) generally within one dilution of the minimum inhibitory concentrations (MICs). Gemifloxacin acts by inhibiting DNA synthesis through the inhibition of both DNA gyrase and topoisomerase IV (TOPO IV), which are essential for bacterial growth. Streptococcus pneumoniae showing mutations in both DNA gyrase and TOPO IV (double mutants) are resistant to most fluoroquinolones. Gemifloxacin has the ability to inhibit both enzyme systems at therapeutically relevant drug levels in S. pneumoniae (dual targeting), and has MIC values that are still in the susceptible range for some of these double mutants.