U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 61 - 70 of 432 results

Status:
Investigational
Source:
NCT01802320: Phase 2 Interventional Completed Colon Mucinous Adenocarcinoma
(2013)
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



MK-2206 is an oral selective allosteric inhibitor of Akt that targets all three isoforms of human Akt (Akt-1, Akt-2 and Akt-3). In a phase I study of solid tumors, MK-2206 demonstrated evidence of target modulation and anti-proliferative activity as a single agent and in combination with other agents. Current ongoing trials of MK-2206 include monotherapy and combination therapy in breast cancer, colorectal cancer, haematological malignancies, non-small cell lung cancer and other. Detected treatment-related adverse event are: rash, fatigue, hyperglycemia.
Status:
Investigational
Source:
NCT00436852: Phase 2 Interventional Completed Disseminated Neuroblastoma
(2007)
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)

Targets:


ABT-751 is an orally bioavailable antimitotic sulfonamide, which binds to the colchicine-binding site on beta-tubulin and inhibits the polymerization of microtubules, leads to a block in the cell cycle at the G2M phase, resulting in cellular apoptosis. ABT-751 had been in phase Ⅱ clinical studies for the treatment of breast cancer; colorectal cancer; non-small cell lung cancer; renal cancer, prostate cancer, but these researches have been discontinued.
Luminespib (NVP-AUY922) is a highly potent isoxazole-based, nongeldanamycin HSP90 inhibitor that inhibits the adenosine triphosphatase activity of HSP90. Luminespib is a highly potent HSP90 inhibitor for HSP90α/β with IC50 of 13 nM /21 nM in cell-free assays, weaker potency against the HSP90 family members GRP94 and TRAP-1, exhibits the tightest binding of any small-molecule HSP90 ligand. Luminespib potently inhibited in vitro growth in all 41 NSCLC cell lines evaluated with IC50 less than 100 nM. IC100 value less than 40 nM was seen in 36 of 41 lines. Luminespib (NVP-AUY922) has greater potency, reduced hepatotoxicity, and lower dependence on DT-diaphorase than the first-generation HSP90 inhibitors. Luminespib was discovered in a multiparameter lead optimization program based on a high-throughput screening hit methodology developed jointly by The Institute of Cancer Research, UK and the pharmaceutical company Vernalis. It has been licensed to Novartis. Luminespib activity is independent of NQO1/DT-diaphorase, maintained in drug-resistant cells and under hypoxic conditions. The molecular signature of HSP90 inhibition, comprising induced HSP72 and depleted client proteins, was readily demonstrable. Pre-clinical studies proved that Luminespib acts via several processes (cytostasis, apoptosis, invasion, and angiogenesis) to inhibit tumor growth and metastasis. These results helped Luminespib to enter clinical trials for various cancers including breast cancers. From 2011 to 2014 it was in Phase II clinical trials.
Status:
Investigational
Source:
NCT00600275: Phase 1/Phase 2 Interventional Completed Solid Tumors
(2007)
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



BGT 226 is an orally available, small molecule, the dual inhibitor of mammalian target of rapamycin (mTOR) and phosphatidylinositol 3'kinase (PI3K), developed by Novartis for the treatment of solid tumors, including advanced breast cancer. A phase I/II trial was completed in the US, Canada, and Spain, and a phase I trial was completed in Japan. However, development appears to have been discontinued.
Status:
Investigational
Source:
NCT02260661: Phase 1 Interventional Completed Advanced Solid Malignancies
(2014)
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



AZD-8835 is a potent inhibitor of PI3Kα and PI3Kδ with selectivity versus PI3Kβ, PI3Kγ, and other kinases that preferentially inhibited growth in cells with mutant PIK3CA status, such as in estrogen receptor-positive (ER(+)) breast cancer cell lines BT474, MCF7, and T47D (sub-umol/L GI50s). Consistent with this, AZD-8835 demonstrated antitumor efficacy in corresponding breast cancer xenograft models when dosed continuously. AZD-8835 is a selective, oral inhibitor of PI3K isoforms α and δ with the following activity in enzymatic assays: PI3K α – IC50 = 6nM (equipotent vs wt and E545K / H1047R mutants); PI3K δ – IC50 = 6nM; PI3K γ – IC50 = 90nM; PI3K β – IC50 = 431nM. Inhibition of signalling in cells (pAKT endpoint): PI3K α – IC50 = 57nM; PI3K δ – IC50 = 49nM; PI3K β – IC50 = 3.6uM; PI3K γ - IC50 = 532nM. AZD-8835 is in phase I clinical studies by AstraZeneca for the treatment of advanced solid tumors and ER+ and HER-2 negative breast cancer.
CUDC-101 is a multi-targeted agent designed to inhibit epidermal growth factor receptor (EGFR), human epidermal growth factor receptor Type 2 (Her2) and histone deacetylase (HDAC). This drug synergistically blocked key regulators of EGFR/HER2 signaling pathways, also attenuating multiple compensatory pathways, such as AKT, HER3, and MET, which enable cancer cells to escape the effects of conventional EGFR/HER2 inhibitors. Thus, a single compound may offer greater therapeutic benefits, which is verified in clinical trial phase I for the treatment patients with advanced head and neck, gastric, breast, liver, and non-small cell lung cancer tumors. In April 2013, CURIS, INC determined that they would discontinue enrolling patients in phase 1 expansion trial of the intravenous formulation of CUDC-101, and that the future development of CUDC-101 would be dependent on our ability to successfully develop an oral formulation of CUDC-101. However, the efforts to develop an effective oral formulation with improved bioavailability have not resulted in significant improvements when compared to the intravenous formulation of CUDC-101. As a result, at this time CURIS no longer plan to make material investments in this program.
Status:
Investigational
Source:
NCT02311933: Phase 2 Interventional Active, not recruiting Recurrent Breast Carcinoma
(2015)
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Endoxifen, also known as N-desmethyl-4-hydroxytamoxifen, is active metabolites of tamoxifen. This metabolite exhibits a 100-fold higher binding affinity to the estrogen receptor (ER) and are more effective in suppressing cell proliferation than tamoxifen. In humans, the conversion from tamoxifen to endoxifen is predominant. Endoxifenis is an orally active, selective estrogen receptor modulator (SERM) that was developed for the treatment of estrogen receptor-positive breast cancer. In addition, this drug possesses antimanic properties, what can be used in the treatment of patients with bipolar I disorder (BPD I).
Status:
Investigational
Source:
NCT03176472: Phase 2 Interventional Completed Painful Diabetic Peripheral Neuropathy
(2020)
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Ricolinostat is a selective inhibitor of HDAC6 with IC50 value of 4.7 nM. Ricolinostat demonstrated good anti-proliferative activity on different cell lines and clinical models of cancer. The drug is being tested in phase I/II for the treatment of multiple myeloma and lymphoid malignancies and in phase I in patients with breast cancer, gynecological cancer, cholangiocarcinoma, recurrent chronic lymphoid leukemia.
Licochalcone A (LicA) is a flavonoid isolated from the famous Chinese medicinal herb Glycyrrhiza uralensis Fisch and has a wide spectrum of pharmacological activities such as anti-oxidant, anti-bacterial, anti-viral, and anti-cancer. However, its pharmacological mechanism is not well defined. The anti-Inflammatory effects of LicA on IL-1β-Stimulated human osteoarthritis chondrocytes was reached by activating Nrf2 signaling pathway. LicA showed anti-proliferative and apoptotic effects in breast cancer cells through regulating Sp1 and apoptosis-related proteins in a dose- and a time-dependent manner. In addition, the chemotherapeutic potential of LicA for treatment of human cervical cancer was achieved by inhibition of PI3K/Akt/mTOR signaling.
Lucitanib (E-3810) is a novel multi-kinase inhibitor currently in clinical trials for its anti-angiogenic and anti-tumor activity. A Phase I/IIa clinical trial of lucitanib was initiated in 2010 and has demonstrated multiple objective responses in FGFR1 gene-amplified breast cancer patients, and objective responses were also observed in patients with tumors often sensitive to VEGFR inhibitors, such as renal cell and thyroid cancer. Lucitanib is an oral, potent inhibitor of the tyrosine kinase activity of fibroblast growth factor receptors 1 through 3 (FGFR1-3), vascular endothelial growth factor receptors 1 through 3 (VEGFR1-3) and platelet-derived growth factor receptors alpha and beta (PDGFR alpha-beta). The most common adverse events were hypertension, asthenia, and proteinuria.