Stereochemistry | ACHIRAL |
Molecular Formula | C24H26N4O4 |
Molecular Weight | 434.4876 |
Optical Activity | NONE |
Defined Stereocenters | 0 / 0 |
E/Z Centers | 0 |
Charge | 0 |
SHOW SMILES / InChI
SMILES
COC1=CC2=C(C=C1OCCCCCCC(=O)NO)C(NC3=CC(=CC=C3)C#C)=NC=N2
InChI
InChIKey=PLIVFNIUGLLCEK-UHFFFAOYSA-N
InChI=1S/C24H26N4O4/c1-3-17-9-8-10-18(13-17)27-24-19-14-22(21(31-2)15-20(19)25-16-26-24)32-12-7-5-4-6-11-23(29)28-30/h1,8-10,13-16,30H,4-7,11-12H2,2H3,(H,28,29)(H,25,26,27)
Molecular Formula | C24H26N4O4 |
Molecular Weight | 434.4876 |
Charge | 0 |
Count |
MOL RATIO
1 MOL RATIO (average) |
Stereochemistry | ACHIRAL |
Additional Stereochemistry | No |
Defined Stereocenters | 0 / 0 |
E/Z Centers | 0 |
Optical Activity | NONE |
CUDC-101 is a multi-targeted agent designed to inhibit epidermal growth factor receptor (EGFR), human epidermal growth factor receptor Type 2 (Her2) and histone deacetylase (HDAC). This drug synergistically blocked key regulators of EGFR/HER2 signaling pathways, also attenuating multiple compensatory pathways, such as AKT, HER3, and MET, which enable cancer cells to escape the effects of conventional EGFR/HER2 inhibitors. Thus, a single compound may offer greater therapeutic benefits, which is verified in clinical trial phase I for the treatment patients with advanced head and neck, gastric, breast, liver, and non-small cell lung cancer tumors. In April 2013, CURIS, INC determined that they would discontinue enrolling patients in phase 1 expansion trial of the intravenous formulation of CUDC-101, and that the future development of CUDC-101 would be dependent on our ability to successfully develop an oral formulation of CUDC-101. However, the efforts to develop an effective oral formulation with improved bioavailability have not resulted in significant improvements when compared to the intravenous formulation of CUDC-101. As a result, at this time CURIS no longer plan to make material investments in this program.
Originator
Approval Year
Sourcing
PubMed
Patents
Sample Use Guides
CUDC-101 administered as a 1 hour intravenous infusion at the maximum tolerated dose of 275 mg/m2 on Monday, Wednesday, Friday for three consecutive weeks of each 28 day cycle.
Route of Administration:
Intravenous
Anaplastic thyroid cancer (ATC) cells were treated with the vehicle or CUDC-101 at 1.1 μM for 24 hour. CUDC-101 inhibited MAPK signaling and histone deacetylation in ATC cell lines with multiple driver mutations present in human ATC. The anticancer effect of CUDC-101 was associated with increased expression of p21 and E-cadherin, and reduced expression of survivin, XIAP, β-catenin, N-cadherin, and Vimentin.