U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 181 - 190 of 235 results

Status:
US Previously Marketed
First approved in 1981

Class (Stereo):
CHEMICAL (ABSOLUTE)



Bayer developed MEZLOCILLIN (previously known as BAYPEN); it is a semisynthetic ampicillin-derived penicillin. Mezlocillin is a penicillin beta-lactam antibiotic used in the treatment of bacterial infections caused by susceptible, usually gram-positive, organisms. The bactericidal activity of mezlocillin results from the inhibition of cell wall synthesis and is mediated through mezlocillin binding to penicillin binding proteins (PBPs). Mezlocillin is stable against hydrolysis by a variety of beta-lactamases, including penicillinases and cephalosporinases and extended spectrum beta-lactamases. Mezlocillin was poorly absorbed orally and was given either intramuscularly or intravenously. This drug was discontinued in the U.S.
Status:
US Previously Marketed
First approved in 1981

Class (Stereo):
CHEMICAL (ABSOLUTE)



Bayer developed MEZLOCILLIN (previously known as BAYPEN); it is a semisynthetic ampicillin-derived penicillin. Mezlocillin is a penicillin beta-lactam antibiotic used in the treatment of bacterial infections caused by susceptible, usually gram-positive, organisms. The bactericidal activity of mezlocillin results from the inhibition of cell wall synthesis and is mediated through mezlocillin binding to penicillin binding proteins (PBPs). Mezlocillin is stable against hydrolysis by a variety of beta-lactamases, including penicillinases and cephalosporinases and extended spectrum beta-lactamases. Mezlocillin was poorly absorbed orally and was given either intramuscularly or intravenously. This drug was discontinued in the U.S.
Status:
US Previously Marketed
Source:
Siseptin by Schering
(1980)
Source URL:
First approved in 1980
Source:
Siseptin by Schering
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Sisomicin is a new broad-spectrum aminoglycoside most closely related structurally to gentamicin C1a. In vitro and in experimental infections, sisomicin has been found to be more potent than or nearly as potent as the most active of the other available aminoglycosides. Although susceptible to many (but not all) aminoglycoside-inactivating enzymes, sisomicin is active against many microorganisms that are resistant to other aminoglycosides by nonenzymatic mechanisms. Sisomicin has been shown to interact synergistically with various beta-lactam antibiotics against enterococci, staphylocicci, Enterobacteriaceae, and nonfermentative gram-negative bacilli. The pharmacokinetics and toxicity of sisomicin in humans appear to be similar to those of gentamicin, despite earlier reports of greater acute toxicity in animals. Sisomicin binds to 30s and 50s ribosomal subunits of susceptible bacteria disrupting protein synthesis, thus rendering the bacterial cell membrane defective.
Status:
US Previously Marketed
Source:
Utibid by Warner/Chilcott
(1975)
Source URL:
First approved in 1975
Source:
Utibid by Warner/Chilcott
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Oxolinic acid is a synthetic quinolone antibiotic related to nalidixic acid. It is authorized in veterinary medicine for use in finfish, calves, pigs, and poultry. It acts by inhibiting bacterial type II topoisomerase activity. Oxolinic acid has been used in human medicine in several countries in the past. Its use in human medicine has largely been replaced by the fluoroquinolone antibiotics.
Status:
US Previously Marketed
First approved in 1974

Class (Stereo):
CHEMICAL (ABSOLUTE)



Cephapirin is a first-generation cephalosporin. Cephapirin has been indicated for the treatment of infections when caused by susceptible strains in respiratory, genitourinary, gastrointestinal, skin and soft tissue, bone and joint infections, septicemia; treatment of susceptible gram-positive bacilli and cocci (never enterococcus); some gram-negative bacilli including E. coli, Proteus, and Klebsiella may be susceptible. Cephapirin is used in veterinary as an intra-uterine antibiotic infusion for the treatment of subacute and chronic endometritis in cows and repeat breeders.
Status:
US Previously Marketed
First approved in 1974

Class (Stereo):
CHEMICAL (ABSOLUTE)



Cephapirin is a first-generation cephalosporin. Cephapirin has been indicated for the treatment of infections when caused by susceptible strains in respiratory, genitourinary, gastrointestinal, skin and soft tissue, bone and joint infections, septicemia; treatment of susceptible gram-positive bacilli and cocci (never enterococcus); some gram-negative bacilli including E. coli, Proteus, and Klebsiella may be susceptible. Cephapirin is used in veterinary as an intra-uterine antibiotic infusion for the treatment of subacute and chronic endometritis in cows and repeat breeders.
Status:
US Previously Marketed
First approved in 1970

Class (Stereo):
CHEMICAL (ABSOLUTE)



Cephaloglycin, first oral cephalosporin, was introduced in 1965, but is no longer in common use. It is an orally absorbed derivative of cephalosporin C. Cephaloglycin binds to and inactivates penicillin-binding proteins (PBPs) located on the inner membrane of the bacterial cell wall. PBPs are enzymes involved in the terminal stages of assembling the bacterial cell wall and in reshaping the cell wall during growth and division. Inactivation of PBPs interferes with the cross-linkage of peptidoglycan chains necessary for bacterial cell wall strength and rigidity. This results in the weakening of the bacterial cell wall and causes cell lysis.
Status:
US Previously Marketed
First approved in 1970

Class (Stereo):
CHEMICAL (ABSOLUTE)



Cephaloglycin, first oral cephalosporin, was introduced in 1965, but is no longer in common use. It is an orally absorbed derivative of cephalosporin C. Cephaloglycin binds to and inactivates penicillin-binding proteins (PBPs) located on the inner membrane of the bacterial cell wall. PBPs are enzymes involved in the terminal stages of assembling the bacterial cell wall and in reshaping the cell wall during growth and division. Inactivation of PBPs interferes with the cross-linkage of peptidoglycan chains necessary for bacterial cell wall strength and rigidity. This results in the weakening of the bacterial cell wall and causes cell lysis.
Status:
US Previously Marketed
First approved in 1964

Class (Stereo):
CHEMICAL (ACHIRAL)


Lapyrium, or lapirium, as the chloride salt lapirium chloride (INN) or lapyrium chloride (USAN), is a cationic surfactant that is used in cosmetic personal care products as a biocide and antistatic agent. A 50% solution of Lapyrium Chloride produced slight to moderate erythema. Lapyrium is also used in waste-water treatment and corrosion inhibition formulations.
Status:
US Previously Marketed
Source:
Septiderm by Fougera
(1960)
Source URL:
First approved in 1960
Source:
Septiderm by Fougera
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)


Chloroxylenol is used as a preservative in cooling fluids, cosmetics, topical medications, urinary antiseptics and metal working fluids. Products containing Chloroxylenol are used for cleaning and disinfecting wounds, abrasions and abscesses, for minor cuts and scratches, insect bites, burns, inflammation of the skin. It is also found in hair conditioners, toilet cleaners, deodorants, soaps and paste. New use cases continue to be identified. Chloroxylenol has been shown to be effective at reducing the number of pathogenic bacteria in clinical environments. Chloroxylenol has been reviewed and is permitted for use within the European Union (EU) in cosmetic products and is also permitted for use in a number of topical pharmaceutical products as licensed by the UK Medicines and Health Regulatory Agency. Chloroxylenol could cause mild skin irritation in some individuals, or cause an allergic reaction in others. Developed in Europe in the 1920s and used in the United States since the 1950s, Chloroxylenol is one of the most mature antimicrobial agents

Showing 181 - 190 of 235 results