U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 341 - 350 of 2252 results


Class (Stereo):
CHEMICAL (ACHIRAL)

Targets:


Lomustine is used in the treatment of certain neoplastic diseases. Although it is generally agreed that lomustine alkylates DNA and RNA, it is not cross resistant with other alkylators. As with other nitrosoureas, it may also inhibit several key enzymatic processes by carbamoylation of amino acids in proteins. Common adverse reactions include delayed myelosupression, nausea, vomiting, stomatitis, and alopecia.
Status:
First approved in 1976

Class (Stereo):
CHEMICAL (ACHIRAL)


Conditions:

Loperamide is a commonly used over-the-counter (OTC) and prescription medicine that is approved to help control symptoms of diarrhea, including Travelers’ Diarrhea. The maximum approved daily dose for adults is 8 mg per day for OTC use and 16 mg per day for prescription use. It is sold under the OTC brand name Imodium A-D, as store brands, and as generics. In vitro and animal studies show that IMODIUM® (loperamide hydrochloride) acts by slowing intestinal motility and by affecting water and electrolyte movement through the bowel. Loperamide binds to the opiate receptor in the gut wall. Consequently, it inhibits the release of acetylcholine and prostaglandins, thereby reducing propulsive peristalsis, and increasing intestinal transit time. Loperamide increases the tone of the anal sphincter, thereby reducing incontinence and urgency. Loperamide is also indicated for reducing the volume of discharge from ileostomies. In man, Loperamide prolongs the transit time of the intestinal contents. It reduces the daily fecal volume, increases the viscosity and bulk density, and diminishes the loss of fluid and electrolytes. Tolerance to the antidiarrheal effect has not been observed. Loperamide is an opioid receptor agonist and acts on the mu opioid receptors in the myenteric plexus large intestines; it does not affect the central nervous system like other opioids. It works specifically by decreasing the activity of the myenteric plexus which decreases the motility of the circular and longitudinal smooth muscles of the intestinal wall. This increases the amount of time substances stay in the intestine, allowing for more water to be absorbed out of the fecal matter. Loperamide also decreases colonic mass movements and suppresses the gastrocolic reflex.
Oxybutynin is an antispasmodic, anticholinergic agent indicated for the treatment of overactive bladder with symptoms of urge urinary incontinence, urgency, and frequency. Oxybutynin relaxes bladder smooth muscle. Oxybutynin exhibits only one-fifth of the anticholinergic activity of atropine on the rabbit detrusor muscle, but four to ten times the antispasmodic activity. Antimuscarinic activity resides predominantly in the R-isomer. Oxybutynin exerts a direct antispasmodic effect on smooth muscle and inhibits the muscarinic action of acetylcholine on smooth muscle. No blocking effects occur at skeletal neuromuscular junctions or autonomic ganglia (antinicotinic effects). By inhibiting particularily the M1 and M2 receptors of the bladder, detrusor activity is markedly decreased.
Loxapine is a dibenzoxazepine tricyclic antipsychotic agent, available for oral and inhalatory administration, classified as a typical antipsychotic. Loxapine acts as an antagonist at central serotonin and dopamine receptors. Adasuve (loxapine inhalation powder) is a prescription medicine that is used to treat acute agitation in adults with schizophrenia or bipolar I disorder.

Class (Stereo):
CHEMICAL (ABSOLUTE)



Carbidopa is a competitive inhibitor of aromatic L-amino acid decarboxylase that does not cross the blood-brain barrier, is routinely administered with levodopa (LD) for the treatment of the symptoms of idiopathic Parkinson’s disease (paralysis agitans), postencephalitic parkinsonism, and symptomatic parkinsonism, which may follow injury to the nervous system by carbon monoxide intoxication and/or manganese intoxication. Current evidence indicates that symptoms of Parkinson’s disease are related to depletion of dopamine in the corpus striatum. Administration of dopamine is ineffective in the treatment of Parkinson’s disease apparently because it does not cross the blood-brain barrier. However, levodopa, the metabolic precursor of dopamine, does cross the blood- brain barrier, and presumably is converted to dopamine in the brain. When levodopa is administered orally it is rapidly decarboxylated to dopamine in extracerebral tissues so that only a small portion of a given dose is transported unchanged to the central nervous system. For this reason, large doses of levodopa are required for adequate therapeutic effect and these may often be accompanied by nausea and other adverse reactions, some of which are attributable to dopamine formed in extracerebral tissues. Carbidopa inhibits decarboxylation of peripheral levodopa. Carbidopa has not been demonstrated to have any overt pharmacodynamic actions in the recommended doses.

Class (Stereo):
CHEMICAL (ABSOLUTE)



Gluconic acid is a natural compound produced from glucose through a simple dehydrogenation reaction catalysed by glucose oxidase. Gluconic acid and its salts are used in the formulation of food, pharmaceutical and hygienic products.
Trimethoprim (TMP) is an antibiotic is used for the treatment of initial episodes of uncomplicated urinary tract infections due to susceptible strains of the following organisms: Escherichia coli, Proteus mirabilis, Klebsiella pneumoniae, Enterobacter species, and coagulase-negative Staphylococcus species, including S. saprophyticus. Cultures and susceptibility tests should be performed to determine the susceptibility of the bacteria to trimethoprim. Therapy may be initiated prior to obtaining the results of these tests. Trimethoprim is rapidly absorbed following oral administration. It exists in the blood as unbound, protein-bound, and metabolized forms. Ten to twenty percent of trimethoprim is metabolized, primarily in the liver; the remainder is excreted unchanged in the urine. The principal metabolites of trimethoprim are the 1- and 3-oxides and the 3'- and 4'-hydroxy derivatives. The free form is considered to be the therapeutically active form. Approximately 44% of trimethoprim is bound to plasma proteins. Trimethoprim blocks the production of tetrahydrofolic acid from dihydrofolic acid by binding to and reversibly inhibiting the required enzyme, dihydrofolate reductase. This binding is very much stronger for the bacterial enzyme than for the corresponding mammalian enzyme
Status:
First approved in 1973
Source:
Pondimin by Robins
Source URL:

Class (Stereo):
CHEMICAL (RACEMIC)



Fenfluramine (former brand names Pondimin, Ponderax and Adifax), also known as 3-trifluoromethyl-N-ethylamphetamine, is an anorectic that is no longer marketed. In combination with phentermine, it was part of the anti-obesity medication Fen-phen. Fenfluramine was introduced on the U.S. market in 1973 and withdrawn in 1997. It is the racemic mixture of two enantiomers, dexfenfluramine, and levofenfluramine. The drug increases the level of serotonin, a neurotransmitter that regulates mood, appetite and other functions. Fenfluramine causes the release of serotonin by disrupting vesicular storage of the neurotransmitter and reversing serotonin transporter function. The drug was withdrawn from the U.S. market in 1997 after reports of heart valve disease and pulmonary hypertension, including a condition known as cardiac fibrosis. It was subsequently withdrawn from other markets around the world. In this small exploratory and retrospective study, remarkably good results were reported on the use of fenfluramine as an add-on medication for controlling seizures in patients with the Dravet syndrome. The side effects were rare and nonserious and did not result in termination of the treatment. It is possible that this drug may have anticonvulsive effects for other severe epilepsy syndromes, especially in those characterized by photosensitive or induced seizures.
Amoxicillin is one of the widely prescribed antibacterial agents, which was discovered by scientists at Beecham Research Laboratories in 1972. In the US GlaxoSmithKline markets it under the original brand name Amoxil. It is the first line treatment for middle ear infections. It is also used for strep throat, pneumonia, skin infections, and urinary tract infections it is taken by mouth. Amoxicillin inhibits the third and final stage of bacterial cell wall synthesis by preferentially binding to specific penicillin-binding proteins (PBPs) that are located inside the bacterial cell wall. This results in a formation of defective cell wall and a cell death. Common side effects include nausea and rash. It may also increase the risk of yeast infections and, when used in combination with clavulanic acid, diarrhea. It should not be used in those who are allergic to penicillin.
Status:
First approved in 1972
Source:
Hydromorphone Hydrochloride by Hikma Pharmaceuticals USA Inc.
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)


Conditions:

Hydromorphone (also known as dihydromorphinone and the brand name Dilaudid among others) is a more potent opioid analgesic than morphine and is used for moderate to severe pain. It can be administered by injection, by infusion, by mouth, and rectally. Oral bioavailability is low. The kidney excretes hydromorphone and its metabolites. Some metabolites may have greater analgesic activity than hydromorphone itself but are unlikely to contribute to the pharmacological activity of hydromorphone. With the exception of pruritus, sedation and nausea and vomiting, which may occur less after hydromorphone than after morphine, the side-effects of these drugs are similar. Hydromorphone interacts predominantly with the opioid mu-receptors. These mu-binding sites are discretely distributed in the human brain, with high densities in the posterior amygdala, hypothalamus, thalamus, nucleus caudatus, putamen, and certain cortical areas. It also binds with kappa and delta receptors which are thought to mediate spinal analgesia, miosis and sedation.