{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
US Approved Rx
(2022)
Source:
ANDA214172
(2022)
Source URL:
First approved in 1986
Source:
NDA019386
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Esmolol (trade name Brevibloc) is a cardioselective beta1 receptor blocker with rapid onset, a very short duration of action, and no significant intrinsic sympathomimetic or membrane stabilizing activity at therapeutic dosages. Esmolol decreases the force and rate of heart contractions by blocking beta-adrenergic receptors of the sympathetic nervous system, which are found in the heart and other organs of the body. Esmolol prevents the action of two naturally occurring substances: epinephrine and norepinephrine. Esmolol predominantly blocks the beta-1 receptors in cardiac tissue. Used for the rapid control of ventricular rate in patients with atrial fibrillation or atrial flutter in perioperative, postoperative, or other emergent circumstances where short term control of ventricular rate with a short-acting agent is desirable. Also used in noncompensatory sinus tachycardia where the rapid heart rate requires specific intervention.
Status:
US Approved Rx
(1995)
Source:
NDA020608
(1995)
Source URL:
First approved in 1985
Source:
NDA018956
Source URL:
Class (Stereo):
CHEMICAL (MIXED)
Conditions:
Iohexol is a nonionic, water-soluble radiographic contrast medium. Organic iodine compounds block x-rays as they pass through the body, thereby allowing body structures containing iodine to be delineated in contrast to those structures that do not contain iodine. It is used in myelography, arthrography, nephroangiography, arteriography, and other radiographic procedures. Drugs which lower seizure threshold, especially phenothiazine derivatives including those used for their antihistaminic or antinauseant properties, are not recommended for use with Iohexol. Others include monoamine oxidase (MAO) inhibitors, tricyclic antidepressants, CNS stimulants, psychoactive drugs described as analeptics, major tranquilizers, or antipsychotic drugs. The most frequently reported adverse reactions are headache, mild to moderate pain including backache, neckache and stiffness, nausea, and vomiting.
Status:
US Approved Rx
(2001)
Source:
ANDA075727
(2001)
Source URL:
First approved in 1985
Source:
NDA018998
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Enalapril (marketed as Vasotec in the US, Enaladex and Renitec in some other countries) is an angiotensin-converting-enzyme (ACE) inhibitor used in the treatment of hypertension, diabetic nephropathy, and some types of chronic heart failure. Enalapril, after hydrolysis to enalaprilat, inhibits angiotensin-converting enzyme (ACE) in human subjects and animals. ACE is a peptidyl dipeptidase that catalyzes the conversion of angiotensin I to the vasoconstrictor substance, angiotensin II. Angiotensin II also stimulates aldosterone secretion by the adrenal cortex. The beneficial effects of enalapril in hypertension and heart failure appear to result primarily from suppression of the renin-angiotensin-aldosterone system. Inhibition of ACE results in decreased plasma angiotensin II, which leads to decreased vasopressor activity and to decrease aldosterone secretion.
Status:
US Approved Rx
(1985)
Source:
NDA018735
(1985)
Source URL:
First approved in 1985
Source:
NDA018735
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Iopamidol is a nonionic, low-osmolar iodinated contrast agent. Iopamidol is indicated for angiography, pediatric angiocardiography, selective visceral arteriography and aortography, peripheral venography, and adult and pediatric intravenous excretory urography and intravenous adult and pediatric contrast enhancement of computed tomographic. Renal toxicity has been reported in a few patients with liver dysfunction who were given oral cholecystographic agents followed by intravascular contrast agents. Intravascular injection of contrast media is frequently associated with the sensation of warmth and pain especially in peripheral arteriography and venography. In angiocardiography the adverse reactions are: hot flashes, angina pectoris, flushing, bradycardia, hypotension, hives.
Status:
US Approved Rx
(1995)
Source:
ANDA074007
(1995)
Source URL:
First approved in 1984
Source:
SECTRAL by PROMIUS PHARMA
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Conditions:
Acebutolol is a cardioselective, beta-adrenoreceptor blocking agent, which possesses mild intrinsic sympathomimetic activity (ISA) in its therapeutically effective dose range. Acebutolol is marketed under the trade names Sectral, Prent. Acebutolol is indicated for the management of hypertension in adults. It may be used alone or in combination with other antihypertensive agents, especially thiazide-type diuretics. Acebutolol is also indicated in the management of ventricular premature beats; it reduces the total number of premature beats, as well as the number of paired and multiform ventricular ectopic beats, and R-on-T beats. Acebutolol is a selective β1-receptor antagonist. Activation of β1-receptors by epinephrine increases the heart rate and the blood pressure, and the heart consumes more oxygen. Acebutolol blocks these receptors, lowering the heart rate and blood pressure. This drug then has the reverse effect of epinephrine. In addition, beta blockers prevent the release of renin, which is a hormone produced by the kidneys which leads to constriction of blood vessels.
Status:
US Approved Rx
(1991)
Source:
NDA019998
(1991)
Source URL:
First approved in 1982
Source:
NDA214993
Source URL:
Class (Stereo):
CHEMICAL (MIXED)
Targets:
Conditions:
Succimer is an analogue of dimercaprol, and has replaced dimercaprol as one of the main antidotes used in the management of poisoning by lead and other heavy metals. The advantages of succimer are that it is effective by oral administration because it is soluble in water, it is well-tolerated, has relatively low toxicity and can be given at the same time as iron supplements to treat iron deficiency anaemia. It does not cause significant increase in urinary excretion of essential minerals unlike the other widelyused lead chelating agent, sodium calcium EDTA.
Status:
US Approved Rx
(1982)
Source:
NDA050577
(1982)
Source URL:
First approved in 1982
Source:
NDA050577
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Streptozotocin (Streptozocin, STZ, Zanosar) is a naturally occurring chemical that is particularly toxic to the insulin-producing beta cells of the pancreas in mammals. It is used in medicine for treating certain cancers of the Islets of Langerhans and used in medical research to produce an animal model for hyperglycemia in a large dose as well as Type 1 diabetes with multiple low doses. Streptozocin inhibits DNA synthesis in bacterial and mammalian cells. In bacterial cells, a specific interaction with cytosine moieties leads to degradation of DNA. The biochemical mechanism leading to mammalian cell death has not been definitely established; streptozocin inhibits cell proliferation at a considerably lower level than that needed to inhibit precursor incorporation into DNA or to inhibit several of the enzymes involved in DNA synthesis. Although streptozocin inhibits the progression of cells into mitosis, no specific phase of the cell cycle is particularly sensitive to its lethal effects. Streptozocin is active in the L1210 leukemic mouse over a fairly wide range of parenteral dosage schedules. In experiments in many animal species, streptozocin induced a diabetes that resembles human hyperglycemic nonketotic diabetes mellitus. This phenomenon, which has been extensively studied, appears to be mediated through a lowering of beta cell nicotinamide adenine dinucleotide (NAD) and consequent histopathologic alteration of pancreatic islet beta cells. The metabolism and the chemical dissociation of streptozocin that occurs under physiologic conditions has not been extensively studied. When administered intravenously to a variety of experimental animals, streptozocin disappears from the blood very rapidly. In all species tested, it was found to concentrate in the liver and kidney. As much as 20% of the drug (or metabolites containing an N-nitrosourea group) is metabolized and/or excreted by the kidney. Metabolic products have not yet been identified.
Status:
US Approved Rx
(2005)
Source:
ANDA076973
(2005)
Source URL:
First approved in 1982
Source:
ACLOVATE by FOUGERA PHARMS
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Alclometasone is synthetic glucocorticoid steroid for topical use. Alclometasone dipropionate cream USP and alclometasone dipropionate ointment USP are indicated for the relief of the inflammatory and pruritic manifestations of corticosteroid-responsive dermatoses. It may be used in pediatric patients 1 year of age or older, although the safety and efficacy of drug use for longer than 3 weeks have not been established. Like other topical corticosteroids, alclometasone dipropionate has anti-inflammatory, antipruritic, and vasoconstrictive properties. The mechanism of the anti-inflammatory activity of the topical steroids, in general, is unclear. However, corticosteroids are thought to act by the induction of phospholipase A2inhibitory proteins, collectively called lipocortins. It is postulated that these proteins control the biosynthesis of potent mediators of inflammation such as prostaglandins and leukotrienes by inhibiting the release of their common precursor, arachidonic acid. Arachidonic acid is released from membrane phospholipids by phospholipase A2. Alclometasone initially binds the corticosteroid receptor. This complex migrates to the nucleus where it binds to different glucocorticoid response elements on the DNA. This in turn enhances and represses various genes, especially those involved in inflammatory pathways.
Status:
US Approved Rx
(1992)
Source:
ANDA073673
(1992)
Source URL:
First approved in 1982
Source:
DOLOBID by MERCK
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Diflunisal is a salicylic acid derivative with analgesic and anti-inflammatory activity. It was developed by Merck Sharp & Dohme in 1971 after showing promise in a research project studying more potent chemical analogs of aspirin. Diflunisal is an aspirin-like nonsteroidal anti-inflammatory drug that inhibits cyclooxygenase-2 (COX-2), an enzyme involved in prostaglandin synthesis.In animals, prostaglandins sensitize afferent nerves and potentiate the action of bradykinin in inducing pain. Since prostaglandins are known to be among the mediators of pain and inflammation, the mode of action of diflunisal may be due to a decrease of prostaglandins in peripheral tissues.
Status:
US Approved Rx
(2005)
Source:
ANDA076900
(2005)
Source URL:
First approved in 1981
Source:
NDA018240
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Atenolol is a Beta-1 cardio-selective adreno-receptor blocking agent discovered and developed by ICI in 1976. Atenolol was launched in the market under the trade name Tenormin in 1976, and became the best-selling Beta-blocker in the world in the 1980s and 1990s. TENORMIN is indicated for the treatment of hypertension, to lower blood pressure; also for the long-term management of patients with angina pectoris and also is indicated in the management of hemodynamically stable patients with definite or suspected acute myocardial infarction to reduce cardiovascular mortality. Like metoprolol, atenolol competes with sympathomimetic neurotransmitters such as catecholamines for binding at beta(1)-adrenergic receptors in the heart and vascular smooth muscle, inhibiting sympathetic stimulation. This results in a reduction in resting heart rate, cardiac output, systolic and diastolic blood pressure, and reflex orthostatic hypotension. Higher doses of atenolol also competitively block beta(2)-adrenergic responses in the bronchial and vascular smooth muscles. Hypotensive mechanism of atenolol is very complex. Decrease in CO and inhibition of renin-angiotensin-aldosterone system may mainly be responsible for hypotension. It is likely that potassium retaining action of atenolol partly contributes to its hypotensive action. It is also hypothetized that renal kallikrein-kinin system may play a role in modulating the hypotensive action of atenolol.