{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
US Approved Rx
(2010)
Source:
ANDA079017
(2010)
Source URL:
First approved in 2002
Source:
NDA021411
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Atomoxetine is indicated for the treatment of Attention-Deficit/Hyperactivity Disorder. The precise mechanism by which atomoxetine produces its therapeutic effects in Attention-Deficit/Hyperactivity Disorder (ADHD) is unknown, but is thought to be related to selective inhibition of the pre-synaptic norepinephrine transporter. Most common adverse reactions are: nausea, vomiting, fatigue, decreased appetite, abdominal pain, and somnolence, constipation, dry mouth, dizziness, erectile dysfunction, and urinary hesitation. Atomoxetine is a substrate for CYP2D6 and hence concurrent treatment with CYP2D6 inhibitors such as bupropion (Wellbutrin) or fluoxetine (Prozac) is not recommended, as this can lead to significant elevations of plasma atomoxetine levels.
Status:
US Approved Rx
(2015)
Source:
ANDA204094
(2015)
Source URL:
First approved in 2002
Source:
NDA021436
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Aripiprazole is the first next-generation atypical antipsychotic. The unique actions of aripiprazole in humans are likely a combination of "functionally selective" activation of D(2) (and possibly D(3))-dopamine receptors and serotonin 5-HT(1A) receptors, coupled with inhibition of 5-HT(2A) receptors. Aripiprazole was approved by FDA (Abilify trade name) for the treatment of schizophrenia; manic and mixed episodes associated with bipolar I disorder; major depressive disorder; irritability associated with autistic disorder; Tourette’s disorder and agitation associated with schizophrenia or bipolar mania.
Status:
US Approved Rx
(2016)
Source:
ANDA206654
(2016)
Source URL:
First approved in 2002
Source:
NDA021267
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Voriconazole (vor-i-KON-a-zole, brand name Vfend, Pfizer) is a triazole antifungal medication. VFEND® (voriconazole) is available as film-coated tablets for oral administration, and as a lyophilized powder for solution for intravenous infusion. Voriconazole is a triazole antifungal agent indicated for use in the treatment of fungal infections including invasive aspergillosis, esophageal candidiasis, and serious fungal infections caused by Scedosporium apiospermum (asexual form of Pseudallescheria boydii) and Fusarium spp. including Fusarium solani. Fungal plasma membranes are similar to mammalian plasma membranes, differing in having the nonpolar sterol ergosterol, rather than cholesterol, as the principal sterol. Membrane sterols such as ergosterol provide structure, modulation of membrane fluidity, and possibly control of some physiologic events. Voriconazole effects the formation of the fungal plasma membrane by indirectly inhibiting the biosynthesis of ergosterol. This results in plasma membrane permeability changes and inhibition of growth. The primary mode of action of voriconazole is the inhibition of fungal cytochrome P-450-mediated 14 alpha-lanosterol demethylation, an essential step in fungal ergosterol biosynthesis. The accumulation of 14 alpha-methyl sterols correlates with the subsequent loss of ergosterol in the fungal cell wall and may be responsible for the antifungal activity of voriconazole. Voriconazole has been shown to be more selective for fungal cytochrome P-450 enzymes than for various mammalian cytochrome P-450 enzyme systems. The most common side effects associated with voriconazole include transient visual disturbances, fever, rash, vomiting, nausea, diarrhea, headache, sepsis, peripheral edema, abdominal pain, and respiratory disorder. Unlike most adverse effects, which are similar to other azole antifungal agents, visual disturbances (such as blurred vision or increased sensitivity to light) are unique to voriconazole. Though rare, there have been cases of serious hepatic reactions during treatment with voriconazole (a class effect of azole antifungal agents). Liver function tests should be evaluated at the start of and during the course of therapy. Voriconazole is phototoxic. It has been associated with an increased risk of squamous-cell carcinoma of the skin
Status:
US Approved Rx
(2020)
Source:
ANDA213820
(2020)
Source URL:
First approved in 2002
Source:
ALINIA by ROMARK
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Tizoxanide, the primary active metabolite of the FDA approved drug nitazoxanide, an anti-infective that has been approved for the treatment of diarrhea caused by Giardia lamblia. Tizoxanide, an active metabolite of nitazoxanide in humans, is also an antiparasitic drug of the thiazolide class. It has broad-spectrum antiparasitic and broad-spectrum antiviral properties. Besides, it has being found that Tizoxanide exhibits appreciable antagonist activity for both mGluR1 and mGluR5 (IC50 = 1.8 uM and 1.2 uM, respectively).
Status:
US Approved Rx
(2019)
Source:
ANDA211041
(2019)
Source URL:
First approved in 2002
Source:
NDA021232
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Nitisinone, 2-(2-nitro-4-trifluoromethylbenzoyl)-1,3-cyclohexanedione (NTBC) is a triketone with herbicidal activity. Orfadin® capsules contain nitisinone used in the treatment of hereditary tyrosinemia type 1 (HT-1). Nitisinone is a competitive inhibitor of 4-hydroxyphenyl-pyruvate dioxygenase, an enzyme
upstream of fumarylacetoacetase in the tyrosine catabolic pathway. By inhibiting the normal
catabolism of tyrosine in patients with HT-1, nitisinone prevents the accumulation of the
catabolic intermediates maleylacetoacetate and fumarylacetoacetate. In patients with HT-1,
these catabolic intermediates are converted to the toxic metabolites succinylacetone and
succinylacetoacetate, which are responsible for the observed liver and kidney toxicity.
Succinylacetone can also inhibit the porphyrin synthesis pathway leading to the accumulation
of 5-aminolevulinate, a neurotoxin responsible for the porphyric crises characteristic of HT-1. Zeneca Agrochemicals and Zeneca Pharmaceuticals made NTBC available for clinical use and, with the approval of the Swedish Medical Products Agency, a seriously ill child with an acute form of tyrosinaemia type 1 was successfully treated in February 1991.
Nitisinone is investigated as a potential treatment for other disorders of tyrosine metabolism including alkaptonuria.
Status:
US Approved Rx
(2012)
Source:
ANDA090939
(2012)
Source URL:
First approved in 2002
Source:
NDA021323
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Escitalopram is one of a class of antidepressants known as selective serotonin reuptake inhibitors (SSRIs). Escitalopram, also known by the brand names Lexapro and Cipralex among others, is an antidepressant. The mechanism of antidepressant action of escitalopram, the S-enantiomer of racemic citalopram, is presumed to
be linked to potentiation of serotonergic activity in the central nervous system (CNS) resulting from its inhibition
of CNS neuronal reuptake of serotonin (5-HT). In vitro and in vivo studies in animals suggest that escitalopram is
a highly selective serotonin reuptake inhibitor (SSRI) with minimal effects on norepinephrine and dopamine
neuronal reuptake. Escitalopram is at least 100-fold more potent than the R-enantiomer with respect to inhibition
of 5-HT reuptake and inhibition of 5-HT neuronal firing rate. LEXAPRO (escitalopram) is indicated for the treatment of major depressive disorder and generalized anxiety disorder .
Status:
US Approved Rx
(2002)
Source:
NDA021196
(2002)
Source URL:
First approved in 2002
Source:
NDA021196
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Sodium oxybate is the sodium salt of gamma-hydroxybutyrate (GHB), an endogenous metabolite of gamma-aminobutyric acid (GABA) a major inhibitory neurotransmitter. Evidence suggests a role for GHB as a neuromodulator/neurotransmitter. Under endogenous conditions and concentrations, and depending on the cell group affected, GHB may increase or decrease neuronal activity by inhibiting the release of neurotransmitters that are co-localised with GHB. After exogenous administration, most of the observed behavioural effects appear to be mediated via the activity of GHB at GABA(B) receptors, as long as the concentration is sufficient to elicit binding, which does not happen at endogenous concentrations. Xyrem (sodium oxybate) oral solution is indicated for the treatment of cataplexy in narcolepsy and excessive daytime sleepiness (EDS) in narcolepsy.
Status:
US Approved Rx
(2019)
Source:
ANDA211908
(2019)
Source URL:
First approved in 2001
Source:
NDA020825
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Ziprasidone is atypical antipsychotic, approved by the U.S. Food and Drug Administration for the treatment of schizophrenia, and acute mania and mixed states associated with bipolar disorder. Intramuscilar injections of Ziprasidone are indicated for rapid control of the agitation in schizophrenic patients. Ziprasidone is used off-label for treatment of major depressive disorder, anxiety, obsessive compulsive disorder, borderline personality disorder. Ziprasidone functions as an antagonist at the D2, 5HT2A, and 5HT1D receptors, and as an agonist at the 5HT1A receptor.
Status:
US Approved Rx
(2019)
Source:
ANDA208429
(2019)
Source URL:
First approved in 2001
Source:
GLEEVEC by NOVARTIS
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Imatinib (GLEEVEC®) is a tyrosine kinase inhibitor and antineoplastic agent that inhibits the BCR-ABL tyrosine kinase, the constitutive abnormal tyrosine kinase created by the Philadelphia chromosome abnormality in chronic myeloid leukaemia (CML). It inhibits proliferation and induces apoptosis in BCR-ABL positive cell lines as well as fresh leukemic cells from Philadelphia chromosome positive CML. Imatinib (GLEEVEC®) inhibits colony formation in assays using ex vivo peripheral blood and bone marrow samples from CML patients. It is also an inhibitor of the receptor tyrosine kinases for platelet-derived growth factor (PDGF) and stem cell factor (SCF), c-kit, and inhibits PDGF- and SCF-mediated cellular events. In vitro, imatinib (GLEEVEC®) inhibits proliferation and induces apoptosis in gastrointestinal stromal tumor (GIST) cells, which express an activating c-kit mutation.
Status:
US Approved Rx
(2022)
Source:
ANDA215621
(2022)
Source URL:
First approved in 2001
Source:
FORADIL by NOVARTIS
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Formoterol is a long-acting selective beta2-adrenergic receptor agonist (beta2-agonist). Inhaled formoterol fumarate acts locally in the lung as a bronchodilator. In vitro studies have shown that formoterol has more than 200-fold greater agonist activity at beta2-receptors than at beta1- receptors. Although beta2-receptors are the predominant adrenergic receptors in bronchial smooth muscle and beta1-receptors are the predominant receptors in the heart, there are also beta2-receptors in the human heart comprising 10%-50% of the total beta-adrenergic receptors. The precise function of these receptors has not been established, but they raise the possibility that even highly selective beta2- agonists may have cardiac effects. The pharmacologic effects of beta2-adrenoceptor agonist drugs, including formoterol, are at least in part attributable to stimulation of intracellular adenyl cyclase, the enzyme that catalyzes the conversion of adenosine triphosphate (ATP) to cyclic-3', 5'-adenosine monophosphate (cyclic AMP). Increased cyclic AMP levels cause relaxation of bronchial smooth muscle and inhibits the release of pro-inflammatory mast-cell mediators such as histamine and leukotrienes. Formoterol also inhibits histamine-induced plasma albumin extravasation in anesthetized guinea pigs and inhibits allergen-induced eosinophil influx in dogs with airway hyper-responsiveness. The relevance of these in vitro and animal findings to humans is unknown. Formoterol is used for use as long-term maintenance treatment of asthma in patients 6 years of age and older with reversible obstructive airways disease, including patients with symptoms of nocturnal asthma, who are using optimal corticosteroid treatment and experiencing regular or frequent breakthrough symptoms requiring use of a short-acting bronchodilator. Not indicated for asthma that can be successfully managed with occasional use of an inhaled, short-acting beta2-adrenergic agonist. Also used for the prevention of exercise-induced bronchospasm, as well as long-term treatment of bronchospasm associated with COPD. Marketed as Foradil Aerolizer.