{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
US Approved Rx
(2017)
Source:
NDA209176
(2017)
Source URL:
First approved in 2017
Source:
NDA209176
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Edaravone is a free radical scavenger developed for the treatment of amyotrophic lateral sclerosis.
Status:
US Approved Rx
(2017)
Source:
NDA208610
(2017)
Source URL:
First approved in 2017
Source:
NDA208610
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Delafloxacin (CAS registry number 189279-58-1) was described as WQ-3034 by Wakunaga Pharmaceutical Co., Ltd., Osaka & Hiroshima, Japan. It was first licensed in 1999 to Abbott Park, IL, and further developed as ABT-492. Delafloxacin (Baxdela), a fluoroquinolone antibiotic, is currently being developed by Melinta Therapeutics. It is a novel investigational fluoroquinolone in development for the treatment of uncomplicated gonorrhea, and acute bacterial skin and skin structure infections. Delafloxacin shows MICs remarkably low against Gram-positive organisms and anaerobes and similar to those of ciprofloxacin against Gram-negative bacteria. It remains active against most fluoroquinolone-resistant strains, except enterococci. Its potency is further increased in acidic environments (found in many infection sites). Delafloxacin is active on staphylococci growing intracellularly or in biofilms. Delafloxacin is a dual-targeting fluoroquinolone, capable of forming cleavable complexes with DNA and topoisomerase IV or DNA gyrase and of inhibiting the activity of these enzymes in both Gram-positive and Gram-negative bacteria. On Oct 24, 2016, Melinta Therapeutics Submitted Baxdela New Drug Application for hospital-treated skin infections.
Status:
US Approved Rx
(2019)
Source:
NDA208259
(2019)
Source URL:
First approved in 2017
Source:
NDA208254
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Netarsudil ophthalmic solution (Rhopressa) is a Rho kinase inhibitor for the treatment of open-angle glaucoma or ocular hypertension. As of December 18, 2017 the FDA approved Aerie Pharmaceutical's Rhopressa (netarsudil ophthalmic solution) 0.02% for the indication of reducing elevated intraocular pressure in patients with open-angle glaucoma or ocular hypertension. Acting as both a rho kinase inhibitor and a norepinephrine transport inhibitor, Netarsudil is a novel glaucoma medication in that it specifically targets the conventional trabecular pathway of aqueous humour outflow to act as an inhibitor to the rho kinase and norepinephrine transporters found there as opposed to affecting protaglandin F2-alpha analog like mechanisms in the unconventional uveoscleral pathway that many other glaucoma medications demonstrate.
Status:
US Approved Rx
(2017)
Source:
NDA208684
(2017)
Source URL:
First approved in 2017
Source:
NDA208684
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Deflazacort is a glucocorticoid developed for the treatment of different inflammatory and immune conditions. The drug is rapidly metabolized to an active metabolite, 21-hydroxy-deflazaxort that may cross the blood brain barrier. Deflazacort acts by suppressing inflammatory response.
Status:
US Approved Rx
(2017)
Source:
NDA209241
(2017)
Source URL:
First approved in 2017
Source:
NDA209241
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
(+)-alpha-Dihydrotetrabenazine (HTBZ) is an active component of tetrabenazine. Tetrabenazine is a mixture of closely-related compounds (isomers) and is readily metabolized in the human body to HTBZ and related isomers. Tetrabenazine is a drug for the symptomatic treatment of hyperkinetic movement disorder and is marketed under the trade names Nitoman in Canada and Xenazine in New Zealand and some parts of Europe, and is also available in the USA as an orphan drug. (+)-alpha-Dihydrotetrabenazine
and related benzo[a]quinolizines have been labeled with tritium and carbon-11 radioisotopes and used for in vitro and in vivo studies of the VMAT2 in animal and human brain. Adeptio Pharmaceuticals is developing alpha-dihydrotetrabenazine (HTBZ) for the treatment of neurological disorders. It acts by inhibiting vesicular monoamine transporter 2 (VMAT2), thereby blocking the transport of dopamine into axon terminals or into storage vesicles.
Status:
US Approved Rx
(2017)
Source:
NDA209606
(2017)
Source URL:
First approved in 2017
Source:
NDA209606
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Enasidenib, aslo known as AG-221 and CC-90007, is a potent and selective IDH2 inhibitor with potential anticancer activity (IDH2 = Isocitrate dehydrogenase 2). The mutations of IDH2 present in certain cancer cells result in a new ability of the enzyme to catalyze the NAPH-dependent reduction of α-ketoglutarate to R(-)-2-hydroxyglutarate (2HG). The production of 2HG is believed to contribute to the formation and progression of cancer. The inhibition of mutant IDH2 and its neoactivity is therefore a potential therapeutic treatment for cancer. Enasidenib is an orally available, selective, potent inhibitor of the mutated IDH2 protein, making it a highly targeted investigational medicine for the potential treatment of patients with cancers that harbor an IDH2 mutation. Enasidenib has received orphan drug and fast track designations from the U.S. FDA. Enasidenib mesylate is in phase II clinical trials for Solid tumours and phase III clinical trials for the treatment of acute myeloid leukaemia.
Status:
US Approved Rx
(2022)
Source:
NDA216387
(2022)
Source URL:
First approved in 2017
Source:
NDA210259
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Acalabrutinib, also known as ACP-196, is a novel irreversible second-generation Bruton’s tyrosine kinase (BTK) inhibitor, which prevents the activation of the B-cell antigen receptor (BCR) signaling pathway and that, was rationally designed to be more potent and selective than ibrutinib. This drug in clinical trials phase III for treatment the treatment of relapsed chronic lymphocytic leukemia. Also in combination with others drugs, Acalabrutinib in phase II of clinical trials for the treatment Glioblastoma Multiforme, Mantle Cell Lymphoma, Squamous Cell Carcinoma of the Head and Neck, Rheumatoid Arthritis and some others.
Status:
US Approved Rx
(2017)
Source:
NDA209195
(2017)
Source URL:
First approved in 2017
Source:
NDA209195
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Voxilaprevir is a Direct-Acting Antiviral (DAA) medication used as part of combination therapy to treat chronic Hepatitis C, an infectious liver disease caused by infection with Hepatitis C Virus (HCV). Sofosbuvir/velpatasvir/voxilaprevir (Vosevi) is indicated for adult patients with chronic HCV without cirrhosis or with compensated cirrhosis who have (1) genotype 1 through 6 and have previously been treated with an NS5A inhibitor or (2) genotype 1a or 3 and have previously been treated with sofosbuvir without an NS5A inhibitor. Voxilaprevir exerts its antiviral action by reversibley binding and inhibiting the NS3/4A serine protease of Hepatitis C Virus (HCV). Following viral replication of HCV genetic material and translation into a single polypeptide, Nonstructural Protein 3 (NS3) and its activating cofactor Nonstructural Protein 4A (NS4A) are responsible for cleaving genetic material into the following structural and nonstructural proteins required for assembly into mature virus: NS3, NS4A, NS4B, NS5A, and NS5B. By inhibiting viral protease NS3/4A, voxilaprevir therefore prevents viral replication and function.
Status:
US Approved Rx
(2017)
Source:
NDA209394
(2017)
Source URL:
First approved in 2017
Source:
NDA209394
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Pibrentasvir is a direct acting antiviral agent and Hepatitis C virus (HCV) NS5A inhibitor that targets the the viral RNA replication and viron assembly. NS5A is a phosphoprotein that plays an essential role in replication, assembly and maturation of infectious viral proteins. The basal phosphorylated form of NS5A, which is maintained by C-terminal serine cluster, is key in ensuring its interaction with the viral capsid protein, or the core protein. By blocking this interaction, pibrentasvir inhibits the assembly of proteins and production of mature HCV particles. In the United States and Europe, Pibrentasvir is approved for use with glecaprevir as the combination drug glecaprevir/pibrentasvir (trade name Mavyret in the US and Maviret in the EU) for the treatment of hepatitis C. This fixed-dose combination therapy was FDA-approved in August 2017 to treat adults with chronic hepatitis C virus (HCV) genotypes 1-6 without cirrhosis (liver disease) or with mild cirrhosis, including patients with moderate to severe kidney disease and those who are on dialysis.
Status:
US Approved Rx
(2017)
Source:
NDA208772
(2017)
Source URL:
First approved in 2017
Source:
NDA208772
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Brigatinib (AP26113) is an investigational, targeted cancer medicine discovered internally at ARIAD Pharmaceuticals, Inc. Brigatinib has exhibited activity as a potent dual inhibitor of anaplastic lymphoma kinase (ALK) and epidermal growth factor receptor (EGFR). It is in development for the treatment of patients with anaplastic lymphoma kinase positive (ALK+) non-small cell cancer (NSCLC) whose disease is resistant to crizotinib. Brigatinib is currently being evaluated in the global Phase 2 ALTA (ALK in Lung Cancer Trial of AP26113) trial that is anticipated to form the basis for its initial regulatory review. ARIAD has also initiated the Phase 3 ALTA 1L trial to assess the efficacy of brigatinib in comparison to crizotinib. Brigatinib was granted orphan drug designation by the U.S. Food and Drug Administration (FDA) in May 2016 for the treatment of certain subtypes of non-small cell lung cancer (NSCLC). The designation is for anaplastic lymphoma kinase-positive (ALK+), c-ros 1 oncogene positive (ROS1+), or epidermal growth factor receptor positive (EGFR+) non-small cell lung cancer (NSCLC). Brigatinib received breakthrough therapy designation from the FDA in October 2014 for the treatment of patients with ALK+ NSCLC whose disease is resistant to crizotinib. Both designations were based on results from an ongoing Phase 1/2 trial that showed anti-tumor activity of brigatinib in patients with ALK+ NSCLC, including patients with active brain metastases.